yolov10/v8 loss详解

v10出了就想看看它的loss设计有什么不同,看下来由于v8和v10的loss部分基本一致就放一起了。

v10的论文笔记,还没看的可以看看,初步尝试耗时确实有提升

好记性不如烂笔头,还是得记录一下,以免忘了,废话结束!!!


代码地址:GitHub - THU-MIG/yolov10: YOLOv10: Real-Time End-to-End Object Detection

论文地址:https://arxiv.org/pdf/2405.14458

        YOLOv10/8从Anchor-Based(box anchor)换成了Anchor-Free(point anchor),检测头也换成了Decoupled Head,这一结构具有提高收敛速度的好处,(在box anchor 方案中试过精度也有提升,但耗时增加了一些)但另一方面讲,也会遇到分类与回归不对齐的问题。在一些网络中,会通过将feature map中的cell(point anchor中心点所编码的box)与ground truth进行IOU计算以分配预测所用cell,但用来分类和回归的最佳cell通常不一致。为了解决这一问题,引入了TAL(Task Alignment Learning)来负责正负样本分配,使得分类和回归任务之间具有较高的对齐一致性。

yolov10/v8中的loss主要分为2部分3个loss:

一、回归分支的损失函数:

1、DFL(Distribution Focal Loss),计算anchor point的中心点到左上角和右下角的偏移量

2、IoU Loss,定位损失,采用CIoU loss,只计算正样本的定位损失

二、分类损失:

1、分类损失,采用BCE loss,只计算正样本的分类损失。


v8DetectionLoss

v8和v10的loss最大的不同在于,v10有两个解耦头,一个计算one2one head,一个计算one2many head,但是两个head的loss函数一样,就是超参数有一些不同

class v10DetectLoss:def __init__(self, model):self.one2many = v8DetectionLoss(model, tal_topk=10)self.one2one = v8DetectionLoss(model, tal_topk=1)def __call__(self, preds, batch):one2many = preds["one2many"]loss_one2many = self.one2many(one2many, batch)one2one = preds["one2one"]loss_one2one = self.one2one(one2one, batch)return loss_one2many[0] + loss_one2one[0], torch.cat((loss_one2many[1], loss_one2one[1]))

one2many的topk为10,one2one的topk为1。(这部分代码和我写辅助监督的方式一样)

class v8DetectionLoss:"""Criterion class for computing training losses."""def __init__(self, model, tal_topk=10):  # model must be de-paralleled"""Initializes v8DetectionLoss with the model, defining model-related properties and BCE loss function."""device = next(model.parameters()).device  # get model deviceh = model.args  # hyperparametersm = model.model[-1]  # Detect() moduleself.bce = nn.BCEWithLogitsLoss(reduction="none")self.hyp = hself.stride = m.stride  # model stridesself.nc = m.nc  # number of classesself.no = m.noself.reg_max = m.reg_maxself.device = deviceself.use_dfl = m.reg_max > 1self.assigner = TaskAlignedAssigner(topk=tal_topk, num_classes=self.nc, alpha=0.5, beta=6.0)self.bbox_loss = BboxLoss(m.reg_max - 1, use_dfl=self.use_dfl).to(device)self.proj = torch.arange(m.reg_max, dtype=torch.float, device=device)def preprocess(self, targets, batch_size, scale_tensor):"""Preprocesses the target counts and matches with the input batch size to output a tensor."""if targets.shape[0] == 0:out = torch.zeros(batch_size, 0, 5, device=self.device)else:i = targets[:, 0]  # image index_, counts = i.unique(return_counts=True)counts = counts.to(dtype=torch.int32)out = torch.zeros(batch_size, counts.max(), 5, device=self.device)for j in range(batch_size):matches = i == jn = matches.sum()if n:out[j, :n] = targets[matches, 1:]out[..., 1:5] = xywh2xyxy(out[..., 1:5].mul_(scale_tensor))return outdef bbox_decode(self, anchor_points, pred_dist):"""Decode predicted object bounding box coordinates from anchor points and distribution."""if self.use_dfl:b, a, c = pred_dist.shape  # batch, anchors, channelspred_dist = pred_dist.view(b, a, 4, c // 4).softmax(3).matmul(self.proj.type(pred_dist.dtype))# pred_dist = pred_dist.view(b, a, c // 4, 4).transpose(2,3).softmax(3).matmul(self.proj.type(pred_dist.dtype))# pred_dist = (pred_dist.view(b, a, c // 4, 4).softmax(2) * self.proj.type(pred_dist.dtype).view(1, 1, -1, 1)).sum(2)return dist2bbox(pred_dist, anchor_points, xywh=False)def __call__(self, preds, batch):"""Calculate the sum of the loss for box, cls and dfl multiplied by batch size."""loss = torch.zeros(3, device=self.device)  # box, cls, dflfeats = preds[1] if isinstance(preds, tuple) else predspred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split((self.reg_max * 4, self.nc), 1)pred_scores = pred_scores.permute(0, 2, 1).contiguous()pred_distri = pred_distri.permute(0, 2, 1).contiguous()dtype = pred_scores.dtypebatch_size = pred_scores.shape[0]imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0]  # image size (h,w)anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)# Targetstargets = torch.cat((batch["batch_idx"].view(-1, 1), batch["cls"].view(-1, 1), batch["bboxes"]), 1)targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])gt_labels, gt_bboxes = targets.split((1, 4), 2)  # cls, xyxymask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0)# Pboxespred_bboxes = self.bbox_decode(anchor_points, pred_distri)  # xyxy, (b, h*w, 4)_, target_bboxes, target_scores, fg_mask, _ = self.assigner(pred_scores.detach().sigmoid(),(pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),anchor_points * stride_tensor,gt_labels,gt_bboxes,mask_gt,)target_scores_sum = max(target_scores.sum(), 1)# Cls loss# loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum  # VFL wayloss[1] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum  # BCE# Bbox lossif fg_mask.sum():target_bboxes /= stride_tensorloss[0], loss[2] = self.bbox_loss(pred_distri, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask)loss[0] *= self.hyp.box  # box gainloss[1] *= self.hyp.cls  # cls gainloss[2] *= self.hyp.dfl  # dfl gainreturn loss.sum() * batch_size, loss.detach()  # loss(box, cls, dfl)

v8DetectionLoss中preprocess

该函数主要是用来处理gt,将同一batch中不同长度的gt(cls + boxes)做对齐,短的gt用全0补齐。假设一个batch为2,其中image1的gt是[4,5],image2的gt是[7,5],那么取该batch中最长的7创建一个batch为2的张量[2,7,5],batch1的前四维为gt信息,为全0。下面用一组实际数据为例:

 对应的gt_labels,gt_bboxes,mask_gt(之后会提到)


v8DetectionLoss中bbox_decode

该函数主要是将每一个anchor point和预测的回归参数通过dist2bbox做解码,生成anchor box与gt计算iou

def dist2bbox(distance, anchor_points, xywh=True, dim=-1):"""Transform distance(ltrb) to box(xywh or xyxy)."""assert(distance.shape[dim] == 4)lt, rb = distance.split([2, 2], dim)x1y1 = anchor_points - ltx2y2 = anchor_points + rbif xywh:c_xy = (x1y1 + x2y2) / 2wh = x2y2 - x1y1return torch.cat((c_xy, wh), dim)  # xywh bboxreturn torch.cat((x1y1, x2y2), dim)  # xyxy bbox

loss[1] bce loss对应类别损失
loss[1] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum  # BCEloss[0] 对应iou loss
loss[2] 对应dfl loss
loss[0], loss[2] = self.bbox_loss(pred_distri, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask)

bbox loss的实现如下:

class BboxLoss(nn.Module):"""Criterion class for computing training losses during training."""def __init__(self, reg_max, use_dfl=False):"""Initialize the BboxLoss module with regularization maximum and DFL settings."""super().__init__()self.reg_max = reg_maxself.use_dfl = use_dfldef forward(self, pred_dist, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask):"""IoU loss."""weight = target_scores.sum(-1)[fg_mask].unsqueeze(-1)iou = bbox_iou(pred_bboxes[fg_mask], target_bboxes[fg_mask], xywh=False, CIoU=True)loss_iou = ((1.0 - iou) * weight).sum() / target_scores_sum# DFL lossif self.use_dfl:target_ltrb = bbox2dist(anchor_points, target_bboxes, self.reg_max)loss_dfl = self._df_loss(pred_dist[fg_mask].view(-1, self.reg_max + 1), target_ltrb[fg_mask]) * weightloss_dfl = loss_dfl.sum() / target_scores_sumelse:loss_dfl = torch.tensor(0.0).to(pred_dist.device)return loss_iou, loss_dfl@staticmethoddef _df_loss(pred_dist, target):"""Return sum of left and right DFL losses.Distribution Focal Loss (DFL) proposed in Generalized Focal Losshttps://ieeexplore.ieee.org/document/9792391"""tl = target.long()  # target lefttr = tl + 1  # target rightwl = tr - target  # weight leftwr = 1 - wl  # weight rightreturn (F.cross_entropy(pred_dist, tl.view(-1), reduction="none").view(tl.shape) * wl+ F.cross_entropy(pred_dist, tr.view(-1), reduction="none").view(tl.shape) * wr).mean(-1, keepdim=True)

TaskAlignedAssigner

这个我认为是整个loss设计中的重头戏

因为整个loss中不像anchor base算法中需要计算前背景的obj loss,所以在TaskAlignedAssigner中需要确定哪些anchor属于前景哪些anchor属于背景,所以TaskAlignedAssigner得到target_labels, target_bboxes, target_scores的同时还需要得到前景的mask--fg_mask.bool()

class TaskAlignedAssigner(nn.Module):"""A task-aligned assigner for object detection.This class assigns ground-truth (gt) objects to anchors based on the task-aligned metric, which combines bothclassification and localization information.Attributes:topk (int): The number of top candidates to consider.num_classes (int): The number of object classes.alpha (float): The alpha parameter for the classification component of the task-aligned metric.beta (float): The beta parameter for the localization component of the task-aligned metric.eps (float): A small value to prevent division by zero."""def __init__(self, topk=13, num_classes=80, alpha=1.0, beta=6.0, eps=1e-9):"""Initialize a TaskAlignedAssigner object with customizable hyperparameters."""super().__init__()self.topk = topkself.num_classes = num_classesself.bg_idx = num_classesself.alpha = alphaself.beta = betaself.eps = eps@torch.no_grad()def forward(self, pd_scores, pd_bboxes, anc_points, gt_labels, gt_bboxes, mask_gt):"""Compute the task-aligned assignment. Reference code is available athttps://github.com/Nioolek/PPYOLOE_pytorch/blob/master/ppyoloe/assigner/tal_assigner.py.Args:pd_scores (Tensor): shape(bs, num_total_anchors, num_classes)pd_bboxes (Tensor): shape(bs, num_total_anchors, 4)anc_points (Tensor): shape(num_total_anchors, 2)gt_labels (Tensor): shape(bs, n_max_boxes, 1)gt_bboxes (Tensor): shape(bs, n_max_boxes, 4)mask_gt (Tensor): shape(bs, n_max_boxes, 1)Returns:target_labels (Tensor): shape(bs, num_total_anchors)target_bboxes (Tensor): shape(bs, num_total_anchors, 4)target_scores (Tensor): shape(bs, num_total_anchors, num_classes)fg_mask (Tensor): shape(bs, num_total_anchors)target_gt_idx (Tensor): shape(bs, num_total_anchors)"""self.bs = pd_scores.shape[0]self.n_max_boxes = gt_bboxes.shape[1]if self.n_max_boxes == 0:device = gt_bboxes.devicereturn (torch.full_like(pd_scores[..., 0], self.bg_idx).to(device),torch.zeros_like(pd_bboxes).to(device),torch.zeros_like(pd_scores).to(device),torch.zeros_like(pd_scores[..., 0]).to(device),torch.zeros_like(pd_scores[..., 0]).to(device),)mask_pos, align_metric, overlaps = self.get_pos_mask(pd_scores, pd_bboxes, gt_labels, gt_bboxes, anc_points, mask_gt)target_gt_idx, fg_mask, mask_pos = self.select_highest_overlaps(mask_pos, overlaps, self.n_max_boxes)# Assigned targettarget_labels, target_bboxes, target_scores = self.get_targets(gt_labels, gt_bboxes, target_gt_idx, fg_mask)# Normalizealign_metric *= mask_pospos_align_metrics = align_metric.amax(dim=-1, keepdim=True)  # b, max_num_objpos_overlaps = (overlaps * mask_pos).amax(dim=-1, keepdim=True)  # b, max_num_objnorm_align_metric = (align_metric * pos_overlaps / (pos_align_metrics + self.eps)).amax(-2).unsqueeze(-1)target_scores = target_scores * norm_align_metricreturn target_labels, target_bboxes, target_scores, fg_mask.bool(), target_gt_idx

get_pos_mask

    def get_pos_mask(self, pd_scores, pd_bboxes, gt_labels, gt_bboxes, anc_points, mask_gt):"""Get in_gts mask, (b, max_num_obj, h*w)."""mask_in_gts = self.select_candidates_in_gts(anc_points, gt_bboxes)  # 表示anchor中心是否位于对应的ground truth bounding box内# Get anchor_align metric, (b, max_num_obj, h*w)align_metric, overlaps = self.get_box_metrics(pd_scores, pd_bboxes, gt_labels, gt_bboxes, mask_in_gts * mask_gt)# Get topk_metric mask, (b, max_num_obj, h*w)mask_topk = self.select_topk_candidates(align_metric, topk_mask=mask_gt.expand(-1, -1, self.topk).bool())# Merge all mask to a final mask, (b, max_num_obj, h*w)mask_pos = mask_topk * mask_in_gts * mask_gt  # 一个anchor point 负责一个gt object的预测return mask_pos, align_metric, overlaps

其中包含select_candidates_in_gts,get_box_metrics,select_topk_candidates,由这三个函数共同选择正样本anchor point的位置

    def select_candidates_in_gts(xy_centers, gt_bboxes, eps=1e-9):"""Select the positive anchor center in gt.Args:xy_centers (Tensor): shape(h*w, 2)gt_bboxes (Tensor): shape(b, n_boxes, 4)Returns:(Tensor): shape(b, n_boxes, h*w)"""n_anchors = xy_centers.shape[0]  # 表示anchor中心的数量bs, n_boxes, _ = gt_bboxes.shapelt, rb = gt_bboxes.view(-1, 1, 4).chunk(2, 2)  # left-top, right-bottom# 通过计算每个anchor中心与每个gt_bboxes的左上角和右下角之间的差值,以及右下角和左上角之间的差值,并将结果拼接为形状为 (bs, n_boxes, n_anchors, -1) 的张量。bbox_deltas = torch.cat((xy_centers[None] - lt, rb - xy_centers[None]), dim=2).view(bs, n_boxes, n_anchors, -1) # return (bbox_deltas.min(3)[0] > eps).to(gt_bboxes.dtype)# 计算 bbox_deltas 张量沿着第3个维度的最小值,形状为 (b, n_boxes, h*w) 的布尔型张量,表示anchor中心是否位于对应的ground truth bounding box内(最小值都为正数)return bbox_deltas.amin(3).gt_(eps) 

实现思想很简单就是,将anchor point的坐标与gt box的左上角坐标相减,得到一个差值,同时gt box右下角的坐标与anchor point的坐标相减,同样得到一个差值,如果anchor point位于gt box内,那么这两组差值的数值都应该是大于0的数。

select_candidates_in_gts用于初步筛选位于gt box中的anchor points

如上图,假设绿色的为gt box,红色的anchor points就是通过 select_candidates_in_gts筛选出来用于预测该gt box表示的object的可能的anchor point,最后返回的是关于这些anchor point的位置mask


get_box_metrics

它具有如下参数:

pd_scores:就是分类head输出的结果,shape一般为[bs, 8400, 80](以coco数据集,输入640*640为例)

pd_bboxes:回归head输出的结果,shape一般为[bs, 8400, 4]

gt_labels,gt_bboxes,mask_gt为gt所包含的信息,由于gt有做过数据用0补齐,mask_gt表示实际上非零的数据

mask_in_gts * mask_gt:表示实际上有gt标签位置上的候选anchor的位置的mask

    def get_box_metrics(self, pd_scores, pd_bboxes, gt_labels, gt_bboxes, mask_gt):"""Compute alignment metric given predicted and ground truth bounding boxes."""na = pd_bboxes.shape[-2]mask_gt = mask_gt.bool()  # b, max_num_obj, h*woverlaps = torch.zeros([self.bs, self.n_max_boxes, na], dtype=pd_bboxes.dtype, device=pd_bboxes.device)  # 存储ioubbox_scores = torch.zeros([self.bs, self.n_max_boxes, na], dtype=pd_scores.dtype, device=pd_scores.device)  # 存储边界框的分数ind = torch.zeros([2, self.bs, self.n_max_boxes], dtype=torch.long)  # torch.Size([2, 2, 7]) * 0 # 2, b, max_num_objind[0] = torch.arange(end=self.bs).view(-1, 1).expand(-1, self.n_max_boxes)  # b, max_num_obj # 批次信息 为从0到 self.bs-1 的序列,将其展开为形状为 (self.bs, self.n_max_boxes)ind[1] = gt_labels.squeeze(-1)  # b, max_num_obj # 类别信息 为 gt_labels 的挤压操作(squeeze(-1)),将其形状变为 (self.bs, self.n_max_boxes)# Get the scores of each grid for each gt clsbbox_scores[mask_gt] = pd_scores[ind[0], :, ind[1]][mask_gt]  # b, max_num_obj, h*w 根据实际边界框的掩码来获取每个网格单元的预测分数,并存储在 bbox_scores 中# (b, max_num_obj, 1, 4), (b, 1, h*w, 4)pd_boxes = pd_bboxes.unsqueeze(1).expand(-1, self.n_max_boxes, -1, -1)[mask_gt]gt_boxes = gt_bboxes.unsqueeze(2).expand(-1, -1, na, -1)[mask_gt]overlaps[mask_gt] = self.iou_calculation(gt_boxes, pd_boxes)# 对于满足实际边界框掩码的每个位置,从 pd_bboxes 中获取预测边界框(pd_boxes)和实际边界框(gt_boxes)计算iou,并将结果存储在 overlaps 中align_metric = bbox_scores.pow(self.alpha) * overlaps.pow(self.beta) # align_metric = bbox_scores^alpha * overlaps^beta 计算对齐度量,其中 alpha 和 beta 是超参数return align_metric, overlaps

通过iou计算预测框(解码后的)与gt box之间的iou得到overlap;由于每个anchor point都有80个类别的预测得分,通过该处gt box对应的类别标签得到预测得分,得到bbox_scores,通过align_metric = bbox_scores^alpha * overlaps^beta 计算对齐度量。该度量同时考虑得分和框的重叠度。


select_topk_candidates

就是通过get_box_metrics中得到的align_metric来确定所有与gt有重叠的anchor中align_metric最高的前十(或前一)

    def select_topk_candidates(self, metrics, largest=True, topk_mask=None):"""Select the top-k candidates based on the given metrics.Args:metrics (Tensor): A tensor of shape (b, max_num_obj, h*w), where b is the batch size,max_num_obj is the maximum number of objects, and h*w represents thetotal number of anchor points.largest (bool): If True, select the largest values; otherwise, select the smallest values.topk_mask (Tensor): An optional boolean tensor of shape (b, max_num_obj, topk), wheretopk is the number of top candidates to consider. If not provided,the top-k values are automatically computed based on the given metrics.Returns:(Tensor): A tensor of shape (b, max_num_obj, h*w) containing the selected top-k candidates."""# (b, max_num_obj, topk)# 使用 torch.topk 函数在给定的度量指标张量 metrics 的最后一个维度上选择前 k 个最大。# 这将返回两个张量:topk_metrics (形状为 (b, max_num_obj, topk)) 包含了选定的度量指标,以及 topk_idxs (形状为 (b, max_num_obj, topk)) 包含了相应的索引topk_metrics, topk_idxs = torch.topk(metrics, self.topk, dim=-1, largest=largest)if topk_mask is None:topk_mask = (topk_metrics.max(-1, keepdim=True)[0] > self.eps).expand_as(topk_idxs)# (b, max_num_obj, topk)topk_idxs.masked_fill_(~topk_mask, 0)  # 使用 topk_mask 将 topk_idxs 张量中未选中的索引位置(~topk_mask)用零进行填充# (b, max_num_obj, topk, h*w) -> (b, max_num_obj, h*w)count_tensor = torch.zeros(metrics.shape, dtype=torch.int8, device=topk_idxs.device)ones = torch.ones_like(topk_idxs[:, :, :1], dtype=torch.int8, device=topk_idxs.device)for k in range(self.topk):# Expand topk_idxs for each value of k and add 1 at the specified positionscount_tensor.scatter_add_(-1, topk_idxs[:, :, k : k + 1], ones) # 使用 scatter_add_ 函数根据索引 topk_idxs[:, :, k : k + 1],将 ones 张量的值相加到 count_tensor 张量的相应位置上# count_tensor.scatter_add_(-1, topk_idxs, torch.ones_like(topk_idxs, dtype=torch.int8, device=topk_idxs.device))# Filter invalid bboxescount_tensor.masked_fill_(count_tensor > 1, 0) # 将 count_tensor 中大于 1 的值用零进行填充,以过滤掉超过一个的边界框return count_tensor.to(metrics.dtype)

比如上图,由于这里只是作为示例,只表示其中一个特征图上gt样例,其他层的gt位置可能有更多的anchor point满足 align_metric的条件被保留下来(不必太纠结这里是不是有10个),因为PAN输出了三层特征图,anchor对应每层特征图的中心,而实践中将每层的anchor展平之后合并在一起得到8400的长度,而最终是在这8400中取前十的anchor,所以每层特征图上保留的anchor可能数量不等。

此时被保留下来的anchor point的位置用1表示,其余位置为0,仅保留了指标前十的样本作为正样本


select_highest_overlaps

    def select_highest_overlaps(mask_pos, overlaps, n_max_boxes):"""If an anchor box is assigned to multiple gts, the one with the highest IoU will be selected.Args:mask_pos (Tensor): shape(b, n_max_boxes, h*w)overlaps (Tensor): shape(b, n_max_boxes, h*w)Returns:target_gt_idx (Tensor): shape(b, h*w)fg_mask (Tensor): shape(b, h*w)mask_pos (Tensor): shape(b, n_max_boxes, h*w)"""# (b, n_max_boxes, h*w) -> (b, h*w)fg_mask = mask_pos.sum(-2)  # 对 mask_pos 沿着倒数第二个维度求和,得到形状为 (b, h*w) 的张量 fg_mask,表示每个网格单元上非背景anchor box的数量if fg_mask.max() > 1:  # one anchor is assigned to multiple gt_bboxes# 创建一个布尔型张量 mask_multi_gts,形状为 (b, n_max_boxes, h*w),用于指示哪些网格单元拥有多个ground truth bounding boxesmask_multi_gts = (fg_mask.unsqueeze(1) > 1).expand(-1, n_max_boxes, -1)  # (b, n_max_boxes, h*w)# 获取每个网格单元上具有最高IoU的ground truth bounding box的索引,并创建一个张量 is_max_overlaps,形状与 mask_pos 相同,# 其中最高IoU的ground truth bounding box对应的位置上为1,其余位置为0。max_overlaps_idx = overlaps.argmax(1)  # (b, h*w)is_max_overlaps = torch.zeros(mask_pos.shape, dtype=mask_pos.dtype, device=mask_pos.device)is_max_overlaps.scatter_(1, max_overlaps_idx.unsqueeze(1), 1)  # max_overlaps_idx表示具有最大iou的索引,将具有最大iou的位置设置为1# 根据 mask_multi_gts 来更新 mask_pos。对于存在多个ground truth bounding box的网格单元,将 is_max_overlaps 中# 对应位置的值赋给 mask_pos,以保留具有最高IoU的ground truth bounding box的匹配情况mask_pos = torch.where(mask_multi_gts, is_max_overlaps, mask_pos).float()  # (b, n_max_boxes, h*w)fg_mask = mask_pos.sum(-2)# Find each grid serve which gt(index)target_gt_idx = mask_pos.argmax(-2)  # (b, h*w) # 得到每个网格单元上具有最高IoU的ground truth bounding box的索引 target_gt_idxreturn target_gt_idx, fg_mask, mask_pos

对被分配了多个gt的anchor去重,得到前景的mask以及anchor point上具有最高IoU的ground truth bounding box的索引。假设上图中红色的anchor被分配给了两个gt,通select_highest_overlaps后会保留gt与该anchor的iou最大的那个,并用该anchor来预测该gt,另一个gt则可能会被周围的其他anchor所负责。此时也要更新mask_pos,毕竟重新对anchor做了处理。

因为每个anchor负责一个类别的检测,mask_pos表示最终确定的anchor的mask,如下图所示为其中一个batch中数据形式

该batch中8240,8241,8242为最终确定的anchor,其在红色箭头所示维度上对应的索引为2,target_gt_idx在该batch上的最终表示为:


get_targets

有了以上的信息之后就获取gt了

    def get_targets(self, gt_labels, gt_bboxes, target_gt_idx, fg_mask):"""Compute target labels, target bounding boxes, and target scores for the positive anchor points.Args:gt_labels (Tensor): Ground truth labels of shape (b, max_num_obj, 1), where b is thebatch size and max_num_obj is the maximum number of objects.gt_bboxes (Tensor): Ground truth bounding boxes of shape (b, max_num_obj, 4).target_gt_idx (Tensor): Indices of the assigned ground truth objects for positiveanchor points, with shape (b, h*w), where h*w is the totalnumber of anchor points.fg_mask (Tensor): A boolean tensor of shape (b, h*w) indicating the positive(foreground) anchor points.Returns:(Tuple[Tensor, Tensor, Tensor]): A tuple containing the following tensors:- target_labels (Tensor): Shape (b, h*w), containing the target labels forpositive anchor points.- target_bboxes (Tensor): Shape (b, h*w, 4), containing the target bounding boxesfor positive anchor points.- target_scores (Tensor): Shape (b, h*w, num_classes), containing the target scoresfor positive anchor points, where num_classes is the numberof object classes."""# Assigned target labels, (b, 1)batch_ind = torch.arange(end=self.bs, dtype=torch.int64, device=gt_labels.device)[..., None]# 使用 target_gt_idx 加上偏移量,得到形状为 (b, h*w) 的 target_gt_idx 张量,表示正样本anchor point的真实类别索引target_gt_idx = target_gt_idx + batch_ind * self.n_max_boxes  # (b, h*w)# 使用 flatten 函数将 gt_labels 张量展平为形状为 (b * max_num_obj) 的张量,然后使用 target_gt_idx 进行索引,# 得到形状为 (b, h*w) 的 target_labels 张量,表示正样本anchor point的目标标签target_labels = gt_labels.long().flatten()[target_gt_idx]  # (b, h*w)# Assigned target boxes, (b, max_num_obj, 4) -> (b, h*w, 4)target_bboxes = gt_bboxes.view(-1, gt_bboxes.shape[-1])[target_gt_idx]  # 表示正样本anchor point的目标边界框# Assigned target scorestarget_labels.clamp_(0)# 10x faster than F.one_hot()target_scores = torch.zeros((target_labels.shape[0], target_labels.shape[1], self.num_classes),dtype=torch.int64,device=target_labels.device,)  # (b, h*w, 80)target_scores.scatter_(2, target_labels.unsqueeze(-1), 1)  # 使用 scatter_ 函数将 target_labels 的值进行 one-hot 编码,将张量中每个位置上的目标类别置为 1fg_scores_mask = fg_mask[:, :, None].repeat(1, 1, self.num_classes)  # (b, h*w, 80)target_scores = torch.where(fg_scores_mask > 0, target_scores, 0) # 根据 fg_scores_mask 的值,将 target_scores 张量中的非正样本位置(值小于等于 0)即背景类置为零return target_labels, target_bboxes, target_scores

该函数的要点基本都在代码里注释了

得到target后还要对target_scores做一些归一化操作

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/338364.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[数据集][目标检测]数据集VOC格式岸边垂钓钓鱼fishing目标检测数据集-4330张

数据集格式:Pascal VOC格式(不包含分割路径的txt文件和yolo格式的txt文件,仅仅包含jpg图片和对应的xml) 图片数量(jpg文件个数):4330 标注数量(xml文件个数):4330 标注类别数:1 标注类别名称:["fishing"] 每…

基于LQR控制算法的电磁减振控制系统simulink建模与仿真

目录 1.课题概述 2.系统仿真结果 3.核心程序与模型 4.系统原理简介 5.完整工程文件 1.课题概述 基于LQR控制算法的电磁减振控制系统simulink建模与仿真。仿真输出控制器的收敛曲线。 2.系统仿真结果 3.核心程序与模型 版本:MATLAB2022a 08_029m 4.系统原理…

Python的第三方库OS库

读者大大们好呀!!!☀️☀️☀️ 🔥 欢迎来到我的博客 👀期待大大的关注哦❗️❗️❗️ 🚀欢迎收看我的主页文章➡️寻至善的主页 文章目录 🔥前言🚀OS/SHUTIL 的方法描述🚀OS/SHUTIL…

Html/HTML5常用标签的学习

课程目标 项目实战,肯定就需要静态网页。朝着做项目方式去学习静态网页。 01、编写第一个html工程结构化 cssjsimages/imgindex.html 归档存储和结构清晰就可以。 02、HTML标签分类 认知:标签为什么要分类,原因因为:分门别类…

泄漏libc基地址

拿libc基地址 方法一:格式化字符串 格式化字符串,首先确定输入的 AAAA 在栈上的位置(x)。使用 elf.got[fun] 获得got地址。利用格式化字符串,构造payload泄漏got地址处的值,recv接受到的字符串中&#xf…

rust安装

目录 一、安装1.1 在Windows上安装1.2 在Linux下安装 二、包管理工具三、Hello World3.1 安装IDE3.2 输出Hello World 一、安装 1.1 在Windows上安装 点击页面 安装 Rust - Rust 程序设计语言 (rust-lang.org),选择"下载RUSTUP-INIT.EXE(64位)&qu…

Django里多app

在 Django 里的某一个项目,里面得包含很多 App (功能),那么如何在该项目里管理这么多App呢? 先说明下背景:未先创建 apps 文件夹来存各个app文件夹,直接在项目文件目录里创建各个app。为了便于管理,得将各…

JVM(Java虚拟机)笔记

面试常见: 请你谈谈你对JVM的理解?java8虚拟机和之前的变化更新?什么是OOM,什么是栈溢出StackOverFlowError? 怎么分析?JVM的常用调优参数有哪些?内存快照如何抓取?怎么分析Dump文件?谈谈JVM中,类加载器你的认识…

虚拟现实环境下的远程教育和智能评估系统(三)

本周继续进行开发工具的选择与学习,基本了解了以下技术栈的部署应用; 一、Seata: Seata(Simple Extensible Autonomous Transaction Architecture)是一款开源的分布式事务解决方案,旨在提供高性能和简单易…

小程序唯品会Authorization sign

声明 本文章中所有内容仅供学习交流使用,不用于其他任何目的,抓包内容、敏感网址、数据接口等均已做脱敏处理,严禁用于商业用途和非法用途,否则由此产生的一切后果均与作者无关!wx a15018601872 本文章未…

Java学习【String类详解】

Java学习【String类详解】 String的介绍及定义方式String类型的比较String类型的查找charAt()访问字符indexOf()查找下标 转化和替换数值和字符串转化大小写的转换字符串转数组格式化替换 字符串的拆分和截取split()拆分substring()截取trim()去除两边空格 StringBuilder和Stri…

521源码-免费源码下载-在线变量命名工具前端源码-新手开发者工具

更多网站源码学习教程,请点击👉-521源码-👈获取最新资源 本工具地址:在线变量命名工具前端源码-新手开发者工具 - 521源码

多输入多输出 | MATLAB实现PSO-SVM粒子群优化支持向量机多输入多输出

多输入多输出 | MATLAB实现PSO-SVM粒子群优化支持向量机多输入多输出 目录 多输入多输出 | MATLAB实现PSO-SVM粒子群优化支持向量机多输入多输出预测效果基本介绍程序设计往期精彩参考资料 预测效果 基本介绍 多输入多输出 | MATLAB实现PSO-SVM粒子群优化支持向量机多输入多输出…

Java大厂面试题第2季

一、本课程前提要求和说明 面试题1: 面试题2: 面试题3: 面试题4: 面试题5: 高频最多的常见笔试面试题目 ArrayList HashMap 底层是什么东东 JVM/GC 多线程与高并发 java集合类

JS脚本打包成一个 Chrome 扩展(CRX 插件)

受这篇博客 如何把CSDN的文章导出为PDF_csdn文章怎么导出-CSDN博客 启发,将 JavaScript 代码打包成一个 Chrome 扩展(CRX 插件)。 步骤: 1.创建必要的文件结构和文件: manifest.jsonbackground.jscontent.js 2.编写…

云计算如何助力金融科技企业实现高效运营

一、引言 随着信息技术的飞速发展,云计算作为一种新兴的计算模式,正在逐渐改变着传统金融行业的运营模式。金融科技企业作为金融行业的重要组成部分,面临着日益增长的业务需求和技术挑战。在这一背景下,云计算凭借其弹性扩展、高可用性、低成本等优势,成为金融科技企业实…

0基础学习Elasticsearch-Quick start

文章目录 1 背景2 前言3 快速部署ES4 快速部署Kibana5 发送请求给ES5.1 打开Kibana控制台5.2 通过REST API发送请求5.3 通过curl发送请求5.4 添加数据5.4.1 添加单个document5.4.2 添加多个document 5.5 搜索数据5.5.1 搜索所有documents5.5.2 match查询 6 总结 1 背景 因电商项…

CISCN 2023 初赛 被加密的生产流量

题目附件给了 modbus.pcap 存在多个协议 但是这道题多半是 考 modbus 会发现 每次的 Query 末尾的两个字符 存在规律 猜测是base家族 可以尝试提取流量中的数据 其中Word Count字段中的22871 是10进制转16进制在转ascii字符串 先提取 过滤器判断字段 tshark -r modbus.pcap …

HTML的标签(标题、段落、文本、图片、列表)

HTML的标签1 标题标签:段落标签:文本标签:图片标签:列表标签:有序列表:无序列表:定义列表:列表案例: 标题标签: 标签:h1~h6 注意:如果使用无效标…

【Linux】日志管理

一、日志进程 1、处理日志的进程 rsyslogd:系统专职日志程序 观察rsyslogd程序: ps aux | grep rsyslogd 2、常见的日志文件 1、系统主日志文件: /var/log/messages 动态查看日志文件尾部: tail -f /var/log/messages 2、安全…