网络空间安全数学基础·循环群、群的结构

3.1 循环群(重要)
3.2 剩余类群(掌握)
3.3 子群的陪集(掌握)
3.4 正规子群、商群(重要)

3.1 循环群

定义:如果一个群G里的元素都是某一个元素g的幂,则G称为循环群。g称为G的一个生成元,由g生成的循环群记为(g)或<g>。
无限循环群可表示为:

有限n阶循环群可表示为:

例:整数加法群Z是一个循环群。1是生成元,每一个元素都是1的“幂”。再次强调讨论的群里“乘法”是抽象的,只代表一种代数运算.在整数加群中,“乘法”就是普通加法,那么“幂”就是一个元素的连加,例如

而且规定

即0为0个1相加。

循环群简单性质:
n阶循环群中g^n = e,得:设i,j是任意整数,如果i≡j (mod n),则g^i = g^j,g^i的逆元g^i = g^(n-i)是交换群。
对于循环群G中两个任意元,循环群一定满足交换律,是交换群(Abel群)。在n阶循环群中,有g^n = e。

设G是一个群,a是G中的一个元素。
1)  a的所有幂两两不相等,于是以a为生成元的循环群是无限循环群。
2) 存在整数i>j,使a^i = a^j,则a^(i-j)=e。这表明存在正整数k = i-j 使a^k = e。使上式成立的最小正整数k称为元素a的阶。在第1种情况下,这样的正整数不存在,称a是无限阶元素。

元素的阶及其性质:
a是n阶元素,则序列两两不相同,而且a的一切幂都包含在这个序列中。 
定理:一个群G的任意元素a都能生成一个循环群,它是G的子群。如果a是无限阶元素,则a生成无限循环群,如果a是n阶元素,则a生成n阶循环群。
定理:对于n阶元素a有a^i = e,当且仅当n|i。a^k 的阶为 n/(k,n)。
推论:元素g生成的n阶循环群G中元素g^k(0<k≤n-1)的阶为 n/(k,n);当k,n互素时,g^k的阶为n,也是G的生成元。

例:8阶循环群各个元素的阶分别为:

其中共有4个生成元

整数集合{0,1,2…,n-1}中与n互素的数有φ(n)个(欧拉函数),因此n阶循环群共有φ(n)个n阶元素即φ(n)个生成元。 

定理:
1)  循环群的子群是循环群,它或者仅由单位元构成,或者由子群中具有最小正指数的元素生成,即生成元为具有最小正指数的元素;
2) 无限循环群的子群除{e}外都是无限循环群;
3)  n阶循环群的子群的阶是n的正因子,且对n的每一个正因子q,有且仅有一个q阶子群。

 例:8阶循环群G的真子群。
8的所有正因子为1,2,4,8, 相应的子群分别为: (因为8=1·8=2·4=4·2=8·1)

其中{e}和G是群G的平凡子群。

3.2 剩余类群

剩余类:根据同余的概念,可以将整数Z进行分类:设m是正整数,把模m同余的整数归为一类,即可表示为 a = qm+r, 0≤r<m,q = 0,±1,±2,… 。这一类,称为剩余类,剩余类中的每个数称为该类的剩余或代表,r称为该类的最小非负剩余。

剩余类群:
将全体整数按模m分成m个剩余类:

= {0,±m,±2m,±3m,…};

 = {1,1±m,1±2m,1±3m,…};
 = {2,2±m,2±2m,2±3m,…};
 …
= {(m-1),(m-1)±m,(m-1)±2m ,…}
这m个剩余类称为模m剩余类,记为Zm。

是两个模m的剩余类,定义剩余类的加法如下:

例:如Z8的两个剩余类

定理:模m的全体剩余类集合对于剩余类加法构成m阶循环群。称为m阶剩余类加群。 
定理:任意无限循环群与整数加群Z同构; 任意n阶循环群与n阶剩余类加群同构。

3.3 子群的陪集

引理:
设G是一个群。
1) 对于任意a∈G,集合 aG = {ah | h∈G}= G。
2) GG = {ah | h∈G,a∈G}= G。

定义:设H是群G的一个子群。对于任意a∈G,集合 aH={ah | h∈H } 称为H的一个左陪集。 同样定义右陪集 Ha = {ha | h∈H }。对于交换群,左陪集和右陪集是一致的,可以称为陪集。

陪集的性质:
(1)
(2)这说明陪集中的任何元素均可以作为代表元。
(3)两个陪集相等的条件
(4)对任何a, b∈G有aH = bH 或。因而H的所有左陪集的集合{aH︱a ∈G}构成了G的划分。

定理:设H是群G的一个子群。H的任意两个左(右)陪集或者相等或者无公共元素。 群G可以表示成若干互不相交的左(右)陪集的并集。

例:设m是一个正整数,M表示所有m的倍数组成的集合, 即M = {mt | t = 0,±1,±2,±3,… } = {0,±m,±2m,±3m,…}, M的另一种表示为M = {mt | t∈Z}。

显然M是整数加群Z的子群。

为模m的一个剩余类,即于是有

可见是M的一个陪集。由Z可以按模m分成m个剩余类,则Z可以按M分成m个陪集: M,1+M,2+M,…,(m-1)+M。

陪集中元素个数=H中元素个数
H的陪集除H外对于G的运算都不是群。

子群的指数及Lagrange定理
设G的阶是n,H是G的m阶子群, H = {g1, g2, …, gm} 设互不相交的左陪集共有j个,j称为子群H在群G中的指数。 j个陪集排列(左陪集阵列):

显然有:n = jm。

推论(拉格朗日定理):设G是一个有限群,H 是一个子群,则H的阶是G的阶的因子。

推论:设G是一个有限群,G中的每一个元素的阶一定是G的阶的因子。设G的阶为n,则对任意a∈G,有a^n = e。

推论:阶为素数的群一定为循环群。

3.4 正规子群、商群

定义:设H是群G的子群,如果H的每一个左陪集也是右陪集,即对于任意a∈G,总有 aH = Ha, 则称H为G的正规子群,或不变子群。 显然阿贝尔群的所有子群是正规子群。

定理:设H是群G的子群,下面命题等价.
1) H是群G的正规子群;
2) 对于任意a∈G,总有 aHa^(-1)= H
3) 对于任意a∈G及任意h∈H,总有 aha^(-1)∈H
4) 对于任意a∈G,总有 aHa^(-1)⊆H

定义:设A,B是群G中的两个子集合,定义子集合A和B的乘积为 AB = {ab | a∈A,b∈B}, 即A中元素和B中元素相乘得到的集合。
然子集乘积满足结合律: (AB)C = A(BC) 如果A是一个子群,b∈G,令B = {b},则A的左陪集bA可表示为BA。

定理:设H是群G的一个子群,H是正规子群的充要条件是任意两个左(右)陪集的乘积仍然是一个左(右)陪集。

定理:如果H是群G的正规子群,则H的全体陪集 {aH | a∈G}对于群子集的乘法构成群,称为G对正规子群H的商群,记为G/H。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/338695.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java——常见进制

在计算机领域有四种比较常见的进制&#xff0c;分别是二进制、八进制、十进制和十六进制。 一、二进制&#xff08;Binary&#xff09; 二进制&#xff08;Binary&#xff09;是一种基数为2的数值系统&#xff0c;仅使用两个符号&#xff1a;0和1。所以它的进位规则就是逢二进…

Navicat连接Oracle

目标&#xff1a; 1.Navicat连接Oracle数据库&#xff0c;报错 无监听程序。 一、下载安装Navicat15 https://zhuanlan.zhihu.com/p/675991635 下载安装资源 链接&#xff1a;百度网盘 请输入提取码 提取码&#xff1a;1u1q 二、测试SQL PLUS连接数据库 在全部程序--》Ora…

使用最小花费爬楼梯 | 动态规划

1.使用最小花费爬楼梯 题目连接&#xff1a;746. 使用最小花费爬楼梯 给你一个整数数组 cost &#xff0c;其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用&#xff0c;即可选择向上爬一个或者两个台阶。 你可以选择从下标为 0 或下标为 1 的台阶开…

Spring系列-SpringMvc父子容器启动原理解析

1、Spring整合SpringMVC 特性&#xff1a; 说到Spring整合SpringMVC唯一的体现就是父子容器&#xff1a; 通常我们会设置父容器&#xff08;Spring&#xff09;管理Service、Dao层的Bean, 子容器(SpringMVC)管理Controller的Bean .子容器可以访问父容器的Bean, 父容器无法访…

【惯性传感器imu】—— WHEELTEC的惯导模块的imu的驱动安装配置和运行

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、IMU驱动安装1. 安装依赖2. 源码的下载3. 编译源码(1) 配置固定串口设备(2) 修改luanch文件(3) 编译 二、启动IMU1. 运行imu2. 查看imu数据 总结 前言 WHEE…

【C++进阶】深入STL之string:模拟实现走进C++字符串的世界

&#x1f4dd;个人主页&#x1f339;&#xff1a;Eternity._ ⏩收录专栏⏪&#xff1a;C “ 登神长阶 ” &#x1f921;往期回顾&#x1f921;&#xff1a;C模板入门 &#x1f339;&#x1f339;期待您的关注 &#x1f339;&#x1f339; ❀STL之string &#x1f4d2;1. string…

图解 Python 编程(10) | 错误与异常处理

&#x1f31e;欢迎来到Python的世界 &#x1f308;博客主页&#xff1a;卿云阁 &#x1f48c;欢迎关注&#x1f389;点赞&#x1f44d;收藏⭐️留言&#x1f4dd; &#x1f31f;本文由卿云阁原创&#xff01; &#x1f4c6;首发时间&#xff1a;&#x1f339;2024年6月2日&…

uni-app全局弹窗的实现方案

背景 为了解决uni-app 任意位置出现弹窗 解决方案 一、最初方案 受限于uni-app 调用组件需要每个页面都引入注册才可以使用&#xff0c;此方案繁琐&#xff0c;每个页面都要写侵入性比较强 二、改进方案 app端&#xff1a;新建一个页面进行跳转&#xff0c;可以实现伪弹窗…

认识微服务,认识Spring Cloud

1. 介绍 本博客探讨的内容如下所示 什么是微服务&#xff1f;什么是springcloud&#xff1f;微服务和springcloud有什么关系&#xff1f; 首先&#xff0c;没有在接触springcloud之前&#xff0c;我写的项目都是单体结构&#xff0c; 但随着网站的用户量越来越大&#xff0c;…

list的简单模拟实现

文章目录 目录 文章目录 前言 一、使用list时的注意事项 1.list不支持std库中的sort排序 2.去重操作 3.splice拼接 二、list的接口实现 1.源码中的节点 2.源码中的构造函数 3.哨兵位头节点 4.尾插和头插 5.迭代器* 5.1 迭代器中的operator和-- 5.2其他迭代器中的接口 5.3迭代器…

【TCP协议中104解析】wireshark抓取流量包工具,群殴协议解析基础

Tcp ,104 ,wireshark工具进行解析 IEC104 是用于监控和诊断工业控制网络的一种标准&#xff0c;而 Wireshark则是一款常用的网络协议分析工具&#xff0c;可以用干解析TEC104 报文。本文将介绍如何使用 Wireshark解析 IEC104报文&#xff0c;以及解析过 程中的注意事项。 一、安…

C语言-01_HelloWord

文章目录 1.C程序运行机制2.HelloWorld的剖析① main()② 函数体③ printf()④ 标准库、头文件 3.输出3.1 printf()标准格式3.2 占位符3.3 输出格式 1.C程序运行机制 过程1&#xff1a;编辑 编写C语言源程序代码&#xff0c;并已文件的形式存储到磁盘中。源程序文件以“.c”作…

dubbo复习:(19)dubbo 和spring整合(老古董)

一、服务端依赖 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"http://maven.apache.org/POM…

【Linux】Linux工具——gcc/g++

1.使用vim更改信用名单——sudo 我们这里来补充sudo的相关知识——添加信任白名单用户 使用sudo就必须将使用sudo的那个账号添加到信用名单里&#xff0c;而且啊&#xff0c;只有超级管理员才可以添加 信用名单在/etc/sudoers里 我们发现它的权限只是可读啊&#xff0c;所以…

cocos入门5:编辑器界面介绍

Cocos Creator是一款功能强大的跨平台游戏开发工具&#xff0c;其编辑器界面设计直观易用&#xff0c;提供了从资源管理、场景编辑到脚本编写等一站式解决方案。下面是对Cocos Creator编辑器界面的详细介绍&#xff1a; 一、界面布局 Cocos Creator编辑器界面通常包含以下几个…

渲染100为什么是高性价比网渲平台?渲染100邀请码1a12

市面上主流的网渲平台有很多&#xff0c;如渲染100、瑞云、炫云、渲云等&#xff0c;这些平台各有特色和优势&#xff0c;也都声称自己性价比高&#xff0c;以渲染100为例&#xff0c;我们来介绍下它的优势有哪些。 1、渲染100对新用户很友好&#xff0c;注册填邀请码1a12有3…

IDeal下的SpringBoot项目部署

一、首先找到自己的sql文件&#xff0c;没有就从数据库挪进来 二、在Maven下打包一下&#xff08;点击package&#xff09;&#xff0c;看到BUILD SUCCESS就是打包好了 三、将上面两个文件分别挪到 linux 中对应的文件&#xff0c;没有就创建一个&#xff08;我的是spring_blog…

常见算法(基本查找、二分查找、分块查找冒泡、选择、插入、快速排序和递归算法)

一、常见算法-01-基本、二分、插值和斐波那契查找 1、基本查找/顺序查找 需求1&#xff1a;定义一个方法利用基本查找&#xff0c;查询某个元素是否存在 数据如下&#xff1a;{131&#xff0c;127&#xff0c;147&#xff0c;81&#xff0c;103&#xff0c;23&#xff0c;7&am…

WordPress子比主题美化-首页动态的图片展示

WordPress子比主题首页动态的图片展示 WordPress子比主题首页添加动态的图片展示&#xff0c;其他程序也可以用&#xff0c;复制代码到相应位置即可&#xff0c;也可作为指定分类&#xff0c;重点内容等&#xff0c;可以适合各个场景&#xff0c;需要的自取。 图片展示: 教程…

Spring源码之BeanDefinition的加载

Spring源码之BeanFactory和BeanDefinition BeanFactory和BeanDefinitionBeanFactoryBeanDefinition源码分析创建AnnotationConfigApplicationContext对象注册配置类refresh方法 BeanFactory和BeanDefinition BeanFactory BeanFactory是Spring提供给外部访问容器的根接口&…