library("survival")
library("survminer")
生存分析需要三个 vector,在一个dataframe中:
- 生存时间,以mouths或者days作单位;
- 结局,"Dead"或者"Alive","Alive"是截尾数据,"Dead"是完全数据;
- 分组信息。
Age_old vs young
一、读入数据
data_cl <- read.csv(file = "Results/测序or临床数据下载/data_cl.csv", header=T, row.names=2,check.names=FALSE)
t_needed=c("vital_status","days_to_last_follow_up","days_to_death","age_at_index","tumor_grade")
meta=data_cl[,t_needed] #筛选需要的临床信息
meta=meta[meta$vital_status %in% c('Alive','Dead'),] #排除结局为"Not Reported"的Sample
View(data_cl)
data_cl$vital_status 中有两个为 Not Reported,需要排除
二、整理数据
1 计算生存时间
meta$days_to_last_follow_up[is.na(meta$days_to_last_follow_up)] = 0 #is.na()用于返回是否为缺失值
meta$days_to_death[is.na(meta$days_to_death)] = 0
meta$days<-ifelse(meta$vital_status=='Alive',meta$days_to_last_follow_up,meta$days_to_death)meta$mouth=round(meta$days/30,2) #以month为单位,保留两位小数
2 添加age_group列(分组数据)
meta$age_group = ifelse(meta$age_at_index>median(meta$age_at_index),'old','young')
三、分析
Surv() 函数输出带有截尾信息的生存时间数据;
survfit() 函数根据生存时间数据、分组信息,并基于”K-M法“输出拟合数据
survData = Surv(time = meta$mouth, #生存时间数据event = meta$vital_status=='Dead') #判断结局,完全数据/截尾数据KMfit <- survfit(survData ~ meta$age_group) # ~ 后是指定的分组
head(survData) 有"+"为截尾数据
[1] 13.20+ 116.73 73.27+ 50.57+ 15.43+ 23.67
survData[1:10,1:2] survData有2个列维度,"status==0"为截尾数据
time status
[1,] 13.20 0
[2,] 116.73 1
[3,] 73.27 0
[4,] 50.57 0
[5,] 15.43 0
[6,] 23.67 0
[7,] 64.90 0
[8,] 77.47 0
[9,] 87.60 0
[10,] 3.23 0
四、拟合生存曲线
ggsurvplot()参数详细介绍
ggsurvplot(KMfit, #拟合对象data = meta, #变量数据来源pval = TRUE, #P值surv.median.line = "hv", #中位生存时间线risk.table = TRUE, #风险表xlab = "Follow up time(m)", #x轴标签break.x.by = 10, #x轴刻度间距#legend = c(0.8,0.75), #图例位置#legend.title = "", #图例标题#legend.labs = c("old", "young"), #图例分组标签)
Gene Expression_high vs low
一、读入数据(临床数据+表达数据)
meta 中留下有结局的Sample;
exp 中合并重复的列名(一个Sample可能有多个组织样本,这里采用取平均的方式去重)
data_cl <- read.csv(file = "Results/测序or临床数据下载/data_cl.csv", header=T, row.names=2,check.names=FALSE)
t_needed=c("vital_status","days_to_last_follow_up","days_to_death","age_at_index","tumor_grade")
meta=data_cl[,t_needed] #筛选需要的临床信息
meta=meta[meta$vital_status %in% c('Alive','Dead'),] #排除结局为"Not Reported"的Sampleexp <- read.csv(file = "Results/测序or临床数据下载/dataFilt.csv", header=T, row.names=1,check.names=FALSE)
colnames(exp)=str_sub(colnames(exp),1,12)
colmeans=function(x){exp_m=as.matrix(x)exp_t=t(exp_m)exp_t=limma::avereps(exp_t)t(exp_t)
}
exp=colmeans(exp) #取平均去除重复列名的Sample
View(data_cl)
data_cl$vital_status 中有两个为 Not Reported,需要排除
二、整理数据
1 计算生存时间
meta$days_to_last_follow_up[is.na(meta$days_to_last_follow_up)] = 0 #is.na()用于返回是否为缺失值
meta$days_to_death[is.na(meta$days_to_death)] = 0
meta$days<-ifelse(meta$vital_status=='Alive',meta$days_to_last_follow_up,meta$days_to_death)meta$mouth=round(meta$days/30,2) #以month为单位,保留两位小数
2 筛选meta中有表达信息的Sample
t_index = rownames(meta)[rownames(meta) %in% colnames(exp)]
meta=meta[t_index,]
三、分析,拟合生存曲线
1 确定基因和高低表达
Gene = "CHAC1"
meta$Expression_level = ifelse(exp[Gene,rownames(meta)]>median(exp[Gene,]),'high','low')
2 作图
survData = Surv(time=meta$mouth, #月份数据event=meta$vital_status=='Dead') #判断哪些是截尾数据
KMfit <- survfit(survData ~ meta$Expression_level) #~后指定分组ggsurvplot(KMfit, # 创建的拟合对象data = meta, # 指定变量数据来源pval = TRUE, # 添加P值surv.median.line = "hv", # 添加中位生存时间线risk.table = TRUE, # 添加风险表ncensor.plot = FALSE, #??图xlab = "Follow up time(m)", # 指定x轴标签break.x.by = 10, # 设置x轴刻度间距palette = c("#E7B800", "#2E9FDF"),#legend = c(0.8,0.75), # 指定图例位置legend.title = Gene, # 设置图例标题#legend.labs = c("old", "young"), # 指定图例分组标签
)