锂电池寿命预测 | Matlab基于SSA-SVR麻雀优化支持向量回归的锂离子电池剩余寿命预测

目录

      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本介绍

【锂电池剩余寿命RUL预测案例】

锂电池寿命预测 | Matlab基于SSA-SVR麻雀优化支持向量回归的锂离子电池剩余寿命预测(完整源码和数据)

1、提取NASA数据集的电池容量,以历史容量作为输入,采用迭代预测的方法对容量进行预测;

2、利用麻雀算法优化 SVR 核参数(选择最佳的SVM核函数参数c和g),通过仿真结果可知SSA-SVR 方法可以提供更精确的电池 RUL预测结果。

3.程序内注释详细,excel数据,方便替换数据。

4.程序语言为matlab,程序可出预测效果图,迭代优化图,相关分析图,运行环境matlab2020b及以上。评价指标包括:R2、RPD、MSE、RMSE、MAE、MAPE等。

5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

锂离子电池(Lithium-ion batteries,LIBs)的剩余使用寿命(remaining useful life,RUL)预测在电池故障预测与健康管理(prognostics and health management,PHM)中起着十分重要的作用。准确预测电池RUL 可以提前对存在安全隐患的电池进行维护和更换,以确保储能系统安全可靠。提出一种基于麻雀优化和支持向量回归(SSA-SVR)的方法,可有效提高锂离子电池RUL 预测的准确性。

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

程序设计

  • 完整程序和数据获取方式:私信博主回复Matlab基于SSA-SVR麻雀优化支持向量回归的锂离子电池剩余寿命预测
%% 清空环境
clear;%清工作区
clc;%清命令
close all;%关闭所有的Figure窗口 
format compact;%压缩空格
tic;%开始计时
%% 005号电池
load('B0005.mat')
m1=616; %有616个数据
n1=168; %有168个discharge放电数据
[~,index] = sortrows({B0005.cycle.type}.');
B0005.cycle = B0005.cycle(index);
clear index  %以上3行为将type排序
A=zeros(168,1); %A矩阵为168行1列的零矩阵
j=1;
for i=171:338A(j,1)=B0005.cycle(i).data.Capacity;i=i+1;j=j+1;
end
% 6号电池
load('B0006.mat')
m2=616;
n2=168;
[~,index] = sortrows({B0006.cycle.type}.');
B0006.cycle = B0006.cycle(index);
clear index
B=zeros(168,1);
j=1;
for i=171:338B(j,1)=B0006.cycle(i).data.Capacity;i=i+1;j=j+1;
end
estc = Best_pos(1, 1);  
bestg = Best_pos(1, 2); %%  建立模型
cmd = [' -t 2 ', ' -c ', num2str(bestc), ' -g ', num2str(bestg), ' -s 3 -p 0.085 '];
model = svmtrain(t_train, p_train, cmd);%%  仿真预测
[t_sim1, error_1] = svmpredict(t_train, p_train, model);
[t_sim2, error_2] = svmpredict(t_test , p_test , model);%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);
T_sim1 =T_sim1';
T_sim2 =T_sim2';
%%  适应度曲线
figure;
plot(1 : length(curve), curve, 'LineWidth', 1.5);
title('SSA-SVR适应度曲线', 'FontSize', 10);
xlabel('迭代次数', 'FontSize', 10);
ylabel('适应度值', 'FontSize', 10);
grid

参考资料

[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/345782.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

搭建RocketMQ主从异步集群

搭建RocketMQ主从异步集群 1、RocketMQ集群模式 为了追求更好的性能,RocketMQ的最佳实践方式都是在集群模式下完成的。RocketMQ官方提供了三种集群搭建方式: 2主2从异步通信方式:使用异步方式进行主从之间的数据复制。吞吐量大,…

【日常记录】【JS】中文转拼音的库 pinyin-pro

文章目录 1、介绍2、pinyin-pro 基本使用3、参考链接 1、介绍 pinyin-pro 是一个专业的 JavaScript 中文转拼音的库,具备多音字识别准确、体积轻量、性能优异、功能丰富等特点。 常用的案例 搜索功能增强:在输入框输入汉字时,可以转化为拼音输…

YOLOv10 超详细解析 | 网络结构、训练策略、论文解读

网络结构 1. Backbone 2. Head 3. 说明 网络结构按 YOLOv10m 绘制,不同 scale 的模型在结构上略有不同,而不是像 YOLOv8 一样仅调整 depth 和 width。Head 有部分后续计算与 YOLOv8 完全相同,上图省略,具体请看此文。YOLOv10 整…

【Python教程】2-函数、逻辑运算与条件判断

在整理自己的笔记的时候发现了当年学习python时候整理的笔记,稍微整理一下,分享出来,方便记录和查看吧。个人觉得如果想简单了解一名语言或者技术,最简单的方式就是通过菜鸟教程去学习一下。今后会从python开始重新更新&#xff0…

Python基础——字符串

一、Python的字符串简介 Python中的字符串是一种计算机程序中常用的数据类型【可将字符串看作是一个由字母、数字、符号组成的序列容器】,字符串可以用来表示文本数据。 通常使用一对英文的单引号()或者双引号(")…

计算机网络ppt和课后题总结(下)

常用端口总结 计算机网络中,端口是TCP/IP协议的一部分,用于标识运行在同一台计算机上的不同服务。端口号是一个16位的数字,范围从0到65535。通常,0到1023的端口被称为“熟知端口”或“系统端口”,它们被保留给一些标准…

springboot高校运动会信息管理系统设计与实现-计算机毕业设计源码92968

摘 要 本论文介绍了一个高校运动会信息管理系统的设计和实现过程。首先是高校运动会的需求分析和可行性分析,通过比较运动会的各个工作流程,确定了系统的数据流程和数据库结构,然后介绍了高校运动会信息管理系统开发所使用的软件开发工具&…

Clo3D导出服装动画,使用Unity3D展示

1.前言 Clo3D是一款应用于时装行业的3D服装设计软件,其强大的布料模拟算法可在3D空间中实现设计、制版、试衣和走秀,大幅提升数字作品逼真度和制作效率。为了让服装动画效果展示在Unity3D上模拟效果,需要Clo3D模拟出逼着的衣服动画。总体流程为Clo3D - Mixamo -Blen…

【算法篇】求最长公共前缀JavaScript版本

题目描述 给你一个大小为 n 的字符串数组 strs &#xff0c;其中包含n个字符串 , 编写一个函数来查找字符串数组中的最长公共前缀&#xff0c;返回这个公共前缀。 数据范围&#xff1a; 数据范围:0<n<5000&#xff0c;0<len(strsi)< 5000 进阶:空间复杂度 O(1)&a…

金融数据中心能力建设指引

金融数据中心能力建设指引 金融数据中心能力建设指引旨在通过高标准的基础设施建设、完善的数据管理、强大的信息安全防护和业务连续性规划&#xff0c;确保数据中心具备高效、安全、可靠的运行能力&#xff0c;支持金融业务的稳定发展。该指引强调技术创新、标准化管理、人才…

【机器学习】Python与深度学习的完美结合——深度学习在医学影像诊断中的惊人表现

&#x1f525; 个人主页&#xff1a;空白诗 文章目录 一、引言二、深度学习在医学影像诊断中的突破1. 技术原理2. 实际应用3. 性能表现 三、深度学习在医学影像诊断中的惊人表现1. 提高疾病诊断准确率2. 辅助制定治疗方案 四、深度学习对医疗行业的影响和推动作用 一、引言 随着…

Java加密体系结构参考指南-Java Cryptography Architecture

本文是从英文的官网摘了翻译的&#xff0c;用作自己的整理和记录。水平有限&#xff0c;欢迎指正。版本是&#xff1a;22 原文地址&#xff1a;https://docs.oracle.com/en/java/javase/22/security/java-cryptography-architecture-jca-reference-guide.html#GUID-815542FE-CF…

web入门(1)---6.10

总结&#xff1a; 多做一点NSSCTF的新手赛&#xff0c;了解基本题型&#xff0c;然后打牢基础知识 谢队讲解 攻防世界 Web入门题 讲解_哔哩哔哩_bilibili 题目来源&#xff1a;攻防世界新手区 1.view_source 查看源代码 2.get_post 收获&#xff1a; get方法是直接在url…

群体优化算法----火山爆发算法介绍以及离散优化Pareto最优解示例

介绍 火山爆发算法&#xff08;Volcano Eruption Algorithm&#xff0c;VEA&#xff09;是一种新兴的群智能优化算法&#xff0c;其灵感来源于火山爆发的自然现象。火山爆发算法模拟了火山爆发过程中熔岩流动和喷发的行为&#xff0c;以寻找全局最优解。这种算法利用了火山爆发…

Linux下打印封装_统计函数执行时间_线程号时间戳打印

统计函数执行时间&#xff08;多线程环境下统计结果不准&#xff09; // 无返回值 #define FUNC_EXEC_TIME_NORET(fun,promote) ({ \ unsigned long long timeDelta 0; \ struct timespec t1 {0}; \ struct timespec t2 {0}; \ clock_gettime(CLOCK_MONOTONIC, &t1); \ …

度小满金融大模型的应用创新

XuanYuan/README.md at main Duxiaoman-DI/XuanYuan GitHub

【MySQL】(基础篇四) —— 检索数据

检索数据 检索数据是我们使用数据库时进行最多的操作&#xff0c;其中包括了检索条件、排序、过滤、分组等等。我会在后续的多篇博客中为你进行详细地介绍它们。 这次先让我们来粗略的了解一下SELECT&#xff0c;为了使用SELECT检索表数据&#xff0c;必须至少明确两点信息—…

汇编:结构体

在32位汇编中&#xff0c;结构体&#xff08;structures&#xff09;用于组织和管理复杂的数据类型&#xff0c;结构体可以包含多个不同类型的数据项&#xff08;成员&#xff09;&#xff1b;在MASM&#xff08;Microsoft Macro Assembler&#xff09;中&#xff0c;使用结构体…

Linux入门学习(2)

1.相关复习新的指令学习 &#xff08;1&#xff09;我们需要自己创建一个用户&#xff0c;这个用户前期可以是一个root用户&#xff0c;后期使用创建的普通用户 &#xff08;2&#xff09;文件等于文件内容加上文件属性,对于文件的操作就包括对于文件内容的操作和文件属性&…

Polar Web【困难】上传

Polar Web【困难】上传 Contents Polar Web【困难】上传探索&思路&效果进入环境绕过过程Webshell连接 EXPPayload 总结 探索&思路&效果 本题的主题可见为文件上传&#xff0c;详情在破解的过程中逐步发掘&#xff1a; 进入环境&#xff0c;为一个文件上传功界面…