在AMD GPU上加速大型语言模型的Flash Attention

Accelerating Large Language Models with Flash Attention on AMD GPUs — ROCm Blogs

引言

在这篇博客文章中,我们将指导您如何在AMD GPU上安装Flash Attention,并提供与在PyTorch中标准SDPA比较其性能的基准测试。我们还将测量Hugging Face中多个大型语言模型(LLM)的端到端预填充延迟。
为了理解Flash Attention及其基准测试结果的重要性,让我们首先深入了解一下推动了变压器架构成功的注意力机制。这种机制是编码器和解码器块的关键组成部分,使得变压器在包括自然语言处理、计算机视觉和音频任务在内的广泛AI领埄中出类拔萃。

尺度点积注意力(Scaled Dot-Product Attention)

Transformer模型中使用的注意力机制被称为尺度点积注意力(SDPA)。SDPA的公式如下,其中_Q_、_K_和_V_是查询、键和值矩阈,_dₖ_是键向量的尺寸:

\text{Attention}(Q, K, V) = \text{Softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right) V

SDPA使得模型在生成输出的每个元素时都能够关注输入的不同部分,使模型能够捕获长距离依赖关系并处理长度不等的序列。

SDPA的成本

尽管SDPA已证明其效用,但它在对较长序列(例如整本书或长视频)进行建模时面临挑战,由于其时间和内存复杂度是二次方的 —— 以输入序列长度 N 的 _O(N²)_。例如,如果你将序列长度加倍,计算所需的时间将增加四倍,并且需要四倍的高带宽内存(HBM)读写次数。由于SDPA的巨大计算成本,其在处理长上下文任务时的适用性受到限制。

针对精简注意力机制计算成本的研究工作相当多,涵盖了采用稀疏和低秩技术来逼近注意力。稀疏注意力技术消除了注意力矩阵中某些条目,而低秩方法将注意力矩阵分解为更小的低秩组件。尽管这些方法可以将计算需求降低至接近线性时间,但由于质量上的折中和与标准SDPA相比实际时钟速度提升有限,它们没有得到广泛采用。

内存瓶颈

近似注意力算法有限的时钟速度提升的主要原因是重点在于减少浮点运算(FLOPs)而不是解决内存访问开销。有趣的是,如果您在GPU上对SDPA进行分析,您会发现大部分时间被丢弃、softmax和掩蔽操作消耗,而不是计算密集型的矩阵乘法。这一意外结果可以通过变压器被内存带宽而不是计算速度所限制来解释。数据移动是您所需的一切揭示了像矩阵乘法这样的计算密集型操作构成了总FLOPs的99.8%以上,但只占总运行时间的61%。出人意料的是,内存密集型操作(如统计归一化和元素级函数,例如丢弃和掩蔽)消耗了变压器模型运行时间剩余的40%。这些内存密集型操作只占总FLOPs的0.02%。

简而言之,读写内存花费的时间比实际计算要多。这些结果突显了在基于变压器的模型中解决内存瓶颈的重要性。

Flash Attention

为了解决这些内存瓶颈问题,Tri Dao提出了Flash Attention,这是一种计算精确关注度的硬件感知关注算法。它通过减少对GPU存储器的关注矩阵的读写次数,并尽可能多地在芯片上进行计算,以解决内存瓶颈。这需要在没有完整输入的情况下计算softmax,并且不存储来自前向传播的关注矩阵。Flash Attention通过将输入分成块,并使用分块在芯片上逐步计算块softmax来实现这一目标。此外,它采用重计算通过仅存储来自前向传播的softmax归一化因子来快速重新计算注意力。所有这些操作都合并到单个GPU内核中,从而实现显著的加速和减少内存使用。深入了解Flash Attention,我们推荐阅读原始论文:Flash Attention:高速且内存高效的精确注意力计算,具备输入输出意识。您可以在GitHub 仓库中找到本博客文章中使用的所有文件和脚本。

先决条件

要运行这篇博客,您需要以下条件:
Linux:请见支持的Linux发行版
ROCm 5.7+:请见安装说明
PyTorch 2.3+:请见安装说明
支持的AMD GPU:请见兼容GPU列表

起步

在这篇博客中,我们将使用rocm/pytorch-nightly Docker镜像并在容器中构建Flash Attention。为了开始,让我们拉取它。

docker pull rocm/pytorch-nightly:latest
docker run -it --network=host --group-add=video \--ipc=host --cap-add=SYS_PTRACE \--security-opt seccomp=unconfined \--device /dev/kfd --device /dev/dri \rocm/pytorch-nightly:latest

接下来安装我们需要的库。

pip install -q transformers accelerate matplotlib

要安装带有ROCm支持的Flash Attention,我们不能简单地运行
pip install flash-attn,因为它安装的版本与AMD GPU不兼容。相反,我们需要克隆AMD的`flash-attention`仓库并从源码构建它。

git clone --recursive https://github.com/ROCm/flash-attention.git
cd flash-attention
MAX_JOBS=$((`nproc` - 1)) pip install -v .

接下来,导入我们需要的库。

import torch
import numpy as np
from tqdm import tqdm
import torch.nn.functional as F
from matplotlib import pyplot as plt
from transformers import AutoTokenizer, AutoModelForCausalLM

基准测试注意力

随着ROCm为PyTorch 2.3发布,Flash Attention现已直接集成到F.scaled_dot_product_attention功能中。默认情况下,当调用`F.scaled_dot_product_attention`并传入查询、键和值矩阵时,它现在将使用Flash Attention计算注意力分数。

为了准确基准测试PyTorch的Flash Attention,我们首先创建一个原始的`scaled_dot_product_attention`函数,以急切模式计算注意力分数。值得注意的是,`F.scaled_dot_product_attention`中找到的其他尺度点积注意力变种在不同程度上融合了注意力操作,而我们在这里有意避免了这一点,以符合原始Flash Attention论文的方法论。

def scaled_dot_product_attention(query, key, value, attn_mask=None, is_causal=False, dropout_p=0.0, scale=None):"""Computes the scaled dot product attention between query, key, and value tensors in PyTorch eager mode.Args:query (torch.Tensor): The query tensor of shape (batch_size, n_heads, seq_len, hidden_dim).key (torch.Tensor): The key tensor of shape (batch_size, n_heads, seq_len, hidden_dim).value (torch.Tensor): The value tensor of shape (batch_size, n_heads, seq_len, hidden_dim).attn_mask (torch.Tensor, optional): The attention mask tensor of shape (batch_size, n_heads, seq_len, seq_len). Defaults to None.is_causal (bool, optional): Whether to apply a causal attention mask. Defaults to False.dropout_p (float, optional): The dropout probability. Defaults to 0.scale (float, optional): The scale factor for the dot product. Defaults to None.Returns:torch.Tensor: The output tensor of shape (batch_size, n_heads, seq_len, hidden_dim)."""# Calculate the scale factorscale_factor = 1 / np.sqrt(query.size(-1)) if scale is None else scaleattn_weight = (query @ key.transpose(-2, -1) * scale_factor)# Create the attention maskattn_mask = torch.ones(query.shape[0], query.shape[1], query.shape[2], query.shape[2], dtype=torch.bool, device=device).tril(diagonal=0) if is_causal else attn_maskattn_weight = attn_weight.masked_fill_(~attn_mask, -torch.inf) if attn_mask is not None else attn_weight# Compute the scaled dot product attentionattn_weight = torch.softmax(attn_weight, dim=-1)attn_weight = torch.dropout(attn_weight, dropout_p, train=False)return attn_weight @ value

为了测试`scaled_dot_product_attention`函数并将其与Flash Attention进行基准测试,我们首先定义一些关键参数。具体来说,我们设置注意力头数为32,嵌入头维度为128。这些设置被选中以匹配常见的7B个因果变压器模型。根据这些关键参数,我们创建查询、键和值矩阵,以测试我们的`scaled_dot_product_attention`计算的注意力分数是否与PyTorch的`F.scaled_dot_product_attention`计算的分数匹配。

batch_size = 1
seq_len = 64
num_heads = 32
embed_dim = 128
dtype = torch.float16
device = torch.device("cuda")query = torch.rand(batch_size, num_heads, seq_len, embed_dim, device=device, dtype=dtype)
key = torch.rand(batch_size, num_heads, seq_len, embed_dim, device=device, dtype=dtype)
value = torch.rand(batch_size, num_heads, seq_len, embed_dim, device=device, dtype=dtype)
eager = scaled_dot_product_attention(query, key, value, is_causal=True)
flash = F.scaled_dot_product_attention(query, key, value, is_causal=True)
assert torch.allclose(eager, flash, rtol=1e-03,atol=1e-03)

我们自己编写的简化版`scaled_dot_product_attention`函数的输出与PyTorch的输出相匹配。现在我们定义了一个名为`bench_attention`的函数,用来测量计算给定序列长度的多头注意力所需的平均时间。

def bench_attention(seq_len, flash=False, num_repeats=256):"""Measures the average time (in ms) required to compute multi-head attention for sequences of a given length.Args:seq_len (int): The length of the input sequence.flash (bool, optional): Whether to use the FlashAttention algorithm. Defaults to False.num_repeats (int, optional): The number of times to repeat the attention computation for timing purposes. Defaults to 256.Returns:float: The average time (in ms) required to compute multi-head attention for sequences of length seq_len."""if flash:mha = F.scaled_dot_product_attentionelse:mha = scaled_dot_product_attentionquery = torch.rand(batch_size, num_heads, seq_len, embed_dim, device=device, dtype=dtype)key = torch.rand(batch_size, num_heads, seq_len, embed_dim, device=device, dtype=dtype)value = torch.rand(batch_size, num_heads, seq_len, embed_dim, device=device, dtype=dtype)start = torch.cuda.Event(enable_timing=True)end = torch.cuda.Event(enable_timing=True)# Warmupfor _ in range(4):_ = mha(query, key, value, is_causal=True)start.record()for _ in range(num_repeats):_ = mha(query, key, value, is_causal=True)   end.record()torch.cuda.synchronize()return start.elapsed_time(end) / num_repeats

现在,让我们来为范围在256至4096(包含端点)的序列长度基准测试Flash Attention与未融合SDPA实现的性能。

context_len = np.arange(256,4096,64)
flash = np.zeros(context_len.shape)
standard = np.zeros(context_len.shape)for i,l in enumerate(tqdm(context_len)):flash[i] = bench_attention(l,flash=True)standard[i] = bench_attention(l,flash=False)

绘制结果。

plt.plot(context_len, standard/flash)
plt.xlabel('Sequence length')
plt.ylabel('Speedup')
plt.title('Flash Attention vs. Standard Attention, head_size=128, n_heads=32, bs=1') 
plt.show()

图表显示,与原始的注意力实现相比,PyTorch中的Flash Attention提供了显著的速度提升,最高达到了2-8倍。值得注意的是,这种加速与原始Flash Attention实现中观察到的加速相匹配。此外,随着序列长度的增加,加速比也随之增加,因为简单的SDPA对序列长度的复杂度是二次方的。

这段代码展示了如何使用自定义的注意力基准测试函数来对比Flash Attention和普通的SDPA实现。最后,通过绘制图表,我们可以可视化Flash Attention相对于标准注意力实现在不同序列长度下的加速比。这显示了Flash Attention显著减少了多头注意力计算的时间,这对于处理大型数据集尤其重要。

基准测试大型语言模型(LLMs)

现在,让我们比较在Hugging Face中启用和禁用Flash Attention时多个大型语言模型的端到端预填充(prefill)延迟。参考
[Hugging Face的文档](https://huggingface.co/docs/transformers/en/perf_infer_gpu_one)
来检查你的模型是否支持Flash Attention。如果支持,可以通过在调用`from_pretrained`时设置`attn_implementation="flash_attention_2"来启用它。值得注意的是,Hugging Face当前使用的是原始的flash_attn`库,而不是PyTorch的Flash Attention。我们将检查结果,看看Flash Attention对整体性能的影响。

首先,我们需要创建一个名为`bench_llm`的函数来测量在Hugging Face中指定的因果语言模型的端到端延迟,给定一个序列长度。

def bench_llm(seq_len, model_name, max_new_tokens=128, flash=False, num_repeats=256):"""Benchmark the end-to-end latency of a large language model (LLM) in Hugging Face, with Flash Attention enabled or disabled.Args:seq_len (int): Length of the input sequence.model_name (str): Name of the pre-trained LLM to use.max_new_tokens (int, optional): Maximum number of new tokens to generate. Defaults to 128.flash (bool, optional):Whether to use flash attention mechanism (if supported by the model).num_repeats (int, optional):Number of times to repeat the inference for averaging. Defaults to 256.Returns:float: The average end-to-end latency in seconds."""if flash:mech = "flash_attention_2"else:mech = "eager"model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, attn_implementation=mech,device_map="cuda",)token_ids = {'input_ids': torch.randint(1, 10000, size=(1, seq_len), device='cuda'),'attention_mask': torch.ones(1, seq_len, device='cuda')}start = torch.cuda.Event(enable_timing=True)end = torch.cuda.Event(enable_timing=True)pad_token_id = model.config.eos_token_id# Warmupfor _ in range(4):_ = model.generate(**token_ids, max_new_tokens=max_new_tokens, pad_token_id=pad_token_id)torch.cuda.synchronize()start.record()for _ in range(num_repeats):_ = model.generate(**token_ids, max_new_tokens=max_new_tokens, pad_token_id=pad_token_id) end.record()torch.cuda.synchronize()return start.elapsed_time(end) / num_repeats

现在我们准备好了,可以对Hugging Face中的Mistral-7B、Llama-3-8B和Phi-2等模型进行端到端延迟基准测试,比较启用和禁用Flash Attention的性能。我们将测量序列长度为512、1024和2048的性能,以评估Flash Attention随序列长度增加的影响。如果你想评估更多或更少的LLMs,只需要添加或修改模型名即可。

seq_lens = np.array([512, 1024, 2048])
model_names = ['mistralai/Mistral-7B-v0.1', 'NousResearch/Meta-Llama-3-8B', 'microsoft/phi-2']
prefill_flash = np.zeros((len(model_names),len(seq_lens)))
prefill_standard = np.zeros((len(model_names),len(seq_lens)))
for j, model_name in enumerate(tqdm(model_names)):for i, seq_len in enumerate(seq_lens):prefill_flash[j,i] = bench_llm(seq_len, model_name=model_name, max_new_tokens=1, flash=True)prefill_standard[j,i] = bench_llm(seq_len, model_name=model_name, max_new_tokens=1, flash=False)

现在让我们来绘制结果。

speedup_prefill = prefill_standard/prefill_flashmodels = ["Mistral-7B", "Llama3-8B", "Phi-2"]
avg_speedup = {'512': speedup_prefill.T[0],'1024': speedup_prefill.T[1],'2048': speedup_prefill.T[2],
}x = np.arange(len(avg_speedup))  
width = 0.25
multiplier = 0fig, ax = plt.subplots(layout='constrained')for attribute, measurement in avg_speedup.items():offset = width * multiplierrects = ax.bar(x + offset, measurement, width, label=attribute)ax.bar_label(rects, fmt='%.2f', padding=3)multiplier += 1ax.legend(loc='upper left', ncols=1)
ax.set_xticks(x + width, models)
ax.set_ylabel('Speedup')
ax.set_title('Flash Attention vs Standard Attention Prefill Latency')
plt.savefig('benchmark-llm.png')
plt.show()

Flash Attention在与标准SDPA相比,显著降低了所有测试的大型语言模型(LLMs)的预填充(prefill)延迟。对于某些LLM,延迟的减少更为明显。此外,随着序列长度的增加,加速效果变得更加显著,这与我们在基准测试注意力模块时观察到的趋势相呼应。

总结

Flash Attention是一种快速且内存效率高的自注意力实现方式,精确且对硬件有意识。在本文中,我们演示了如何安装支持ROCm的Flash Attention,并以两种方式对其性能进行了基凌测试:
1. 作为一个独立模块,来测量Flash Attention算法相对于SDPA的速度提升。
2. 在Hugging Face中对多个LLMs的端到端预填充延迟进行评估,来衡量Flash Attention对模型整体预填充延迟的影响。
我们的结果表明,尤其是对于长序列,在AMD GPU上,Flash Attention提供了与原始注意力实现相比的显著速度提升。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/348494.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

win11联想版,如何下载Visual Basic 6.0精简版

一、背景 Visual Basic 6.0精简版、Visual Basic Mini,等 Win11系统,网上找压缩包下载,无法成功。 二、解决 通过下载联想应用商店,在应用商店中下载 步骤一 hi,推荐你使用联想应用商店,商店提供上万款…

积累和消耗,人生本质的两件事

人生的本质其实就两件事,消耗和积累。 纵观你身边所有的人,他们做的所有的事,基本都可以分为两类。 一、积累 二、消耗 比如说感情,在我们每一个人的青春回忆里,都或多或少有一段刻骨铭心的感情,有些人的感…

sklearn深度学习指南:掌握机器学习的利器

sklearn深度学习指南:掌握机器学习的利器! 1. 简介1.1 什么是sklearn?1.2 sklearn的优势和应用领域1.3 为什么要学习和使用sklearn? 2. 安装和环境设置2.1 如何安装sklearn?安装Anaconda(Windows/macOS/Lin…

6.8日志系统

当做大型项目的时候,出了bug可能需要借助于日志检查,小项目一般是打断点。 服务器是一直在运行的,不能停止,可以借助于日志检查错误。 日志分为两种:业务级别的日志(供用户分析业务过程)&…

BarTender软件下载附加详细安装教程

BarTender是美国海鸥科技推出的一款优秀的条码打印软件,应用于 WINDOWS95 、 98 、 NT 、 XP 、 2000 、 2003 和 3.1 版本, 产品支持广泛的条形码码制和条形码打印机, 不但支持条形码打印机而且支持激光打印机,还为世界知名品牌条…

C语言 指针——字符数组与字符指针:字符串的表示与存储

目录 字符串常量 字符串变量? 字符数组的定义和初始化 字符指针的定义和初始化 将字符指针指向一个字符串 用字符数组保存一个字符串 将字符指针指向一个字符数组 使用字符指针的基本原则 使用指针的基本原则 字符串常量 字符串变量?  C 语言…

Steam下载游戏很慢?一个设置解决!

博主今天重装系统后,用steam下载发现巨慢 500MB,都要下载半小时。 平时下载软件,一般1分钟就搞定了,于是大致就知道,设置应该出问题了 于是修改了,如下设置之后,速度翻了10倍。 另外&#x…

神经网络 torch.nn---Convolution Layers

torch.nn — PyTorch 2.3 documentation torch.nn - PyTorch中文文档 (pytorch-cn.readthedocs.io) torch.nn和torch.nn.functional的区别 torch.nn是对torch.nn.functional的一个封装,让使用torch.nn.functional里面的包的时候更加方便 torch.nn包含了torch.nn.…

随心笔记,第六更

目录 一、 三步构建 XML转成java bean 1.XML转XSD 2.XSD转JavaBean 3.jaxb 工具类 4.测试 📢📢📢📣📣📣 哈喽!大家好,我是「Leen」。刚工作几年,想和大家一同进步&am…

从零开始手把手Vue3+TypeScript+ElementPlus管理后台项目实战十(整体布局03之界面美化)

删除style.css 删除style.css(和main.ts同级) 并且注释掉main.ts中对style.css的导入。 修改App.vue 添加样式设置高度100% 安装sass pnpm install -D sass修改PageSidebar.vue 修改index.vue 修改src/layout/index.vue src/layout/index.vue添加样式 <style lang&quo…

pyinstaller打包exe多种失败原因解决方法

pyinstaller打包exe多种失败原因解决方法 目录 pyinstaller打包exe多种失败原因解决方法1、pyinstaller安装有问题1.1 安装pyinstaller1.2 采用anconda的环境启动 2、pyqt5与pyside6冲突2.1 打包生成.spec文件2.2 编辑spec文件 3、打包成功后打不开exe&#xff0c;exe闪退3.1 s…

用表头设置控制表格内列的排序和显示隐藏

项目背景 : react ant 需求 : 点击表头设置弹窗 , 拖拽可控制外部表格列的排序 , 开关可控制外部表格列的显示和隐藏 实现效果如下 :注意 : 1. 拖拽效果参考了ant-table中的拖拽效果(这块代码放最后) 2. 后台反了json格式(用is_show控制显示和隐藏 , 我给他传…

把Vue文件转至树莓派上遇到的问题和解决方案

把整个文件夹复制进树莓派后&#xff0c;运行 npm run dev ,报错sh: 1: vite: Permission denied 解决方案&#xff1a;删除项目里的 node_modules 重新 npm install 再运行即可 rm -rf node_modules/ npm install 在安装过程中&#xff0c;遇到下图问题&#xff0c;vulnerabi…

一二三应用开发平台应用开发示例(2)——创建应用、模块、实体及配置模型

创建应用 文档管理系统对于开发平台是一个业务应用。 业务应用是通过平台内置的数据字典来维护的&#xff0c;因此访问系统管理模块下的数据字典管理功能&#xff0c;在实体配置分组下找到“应用编码”&#xff0c;点击行记录上的“字典项”。 在打开的新窗口中&#xff0c;在…

CTFHUB-SQL注入-MySQL结构

目录 sqlmap工具夺flag 查看数据库名 查看数据库中表名 查看第一个表中数据 查看第二个表的数据 手动注入 判断是否存在注入 判断字段数量 查询注入点 查询数据库版本 查询数据库名 查看所有数据库 查看表名 查看表中字段 查看表中数据 本题用到sqlmap工具&…

采用ava+B/S架构开发的工业级UWB(Ultra-Wideband)室内定系统源码UWB定位系统技术接口及技术特点

采用avaB/S架构开发的工业级UWB&#xff08;Ultra-Wideband&#xff09;室内定系统源码UWB定位系统技术接口及技术特点 UWB&#xff08;Ultra-Wideband&#xff09;定位技术本身并不直接连接蓝牙或其他无线通信技术进行定位。然而&#xff0c;在实际应用中&#xff0c;UWB定位技…

鸿蒙轻内核A核源码分析系列五 虚实映射(5)虚实映射解除

虚实映射解除函数LOS_ArchMmuUnmap解除进程空间虚拟地址区间与物理地址区间的映射关系&#xff0c;其中参数包含MMU结构体、解除映射的虚拟地址和解除映射的数量count,数量的单位是内存页数。 ⑴处函数OsGetPte1用于获取指定虚拟地址对应的L1页表项数据。⑵处计算需要解除的无效…

使用MATLAB对地铁站、公交站等求解最短路径

使用MATLAB对城市的地铁站、公交站等站点&#xff0c;根据站点的经纬度坐标和彼此之间的权重&#xff0c;求解其最短路径、途径站点和路程 已知的数据如图&#xff0c;是西安市地铁站点的数据&#xff0c;保存在一个Excel里 如图&#xff0c;每列的内容都在上面&#xff0c;不…

Go singlefight 源码详解|图解

写在前面 通俗的来说就是 singleflight 将相同的并发请求合并成一个请求&#xff0c;进而减少对下层服务的压力&#xff0c;通常用于解决缓存击穿的问题。 详解 基础结构 golang.org/x/sync/singleflight singleflight结构体&#xff1a; type call struct {wg sync.WaitGro…

Tabby:一款革新的Mac/Win现代化终端模拟器

在信息技术日新月异的今天&#xff0c;终端操作已成为众多开发者、系统管理员和技术爱好者的日常必备工具。然而&#xff0c;传统的终端模拟器往往功能单一、界面陈旧&#xff0c;无法满足用户对于高效、便捷操作体验的追求。Tabby应运而生&#xff0c;作为一款现代化、功能强大…