【机器学习】LightGBM: 优化机器学习的高效梯度提升决策树


鑫宝Code

🌈个人主页: 鑫宝Code
🔥热门专栏: 闲话杂谈| 炫酷HTML | JavaScript基础
💫个人格言: "如无必要,勿增实体"


文章目录

      • LightGBM: 优化机器学习的高效梯度提升决策树
        • 引言
        • 一、LightGBM概览
        • 二、核心技术解析
          • 1. 直方图近似(Histogram Approximation)
          • 2. 基于梯度的单边采样(Gradient-Based One-Side Sampling, GOSS)
          • 3. 特征并行与数据并行
        • 三、与其他GBDT实现的对比
        • 四、实践应用与调参技巧
        • 五、结论

LightGBM: 优化机器学习的高效梯度提升决策树

引言

在机器学习领域,梯度提升决策树(Gradient Boosting Decision Tree, GBDT)因其强大的预测能力和解释性而备受推崇。随着数据规模的日益增大,对模型训练速度和效率的需求也愈发迫切。在此背景下,Microsoft Research于2017年开源的LightGBM项目,凭借其高速度、高效率以及优秀的性能,在众多GBDT框架中脱颖而出,成为业界和学术界的新宠。本文将深入探讨LightGBM的核心优势、工作原理、关键特性和应用场景,旨在为读者提供一份全面而深入的理解指南。
在这里插入图片描述

一、LightGBM概览

诞生背景:面对传统GBDT在处理大规模数据集时遇到的内存消耗大、训练时间长等问题,LightGBM应运而生,它通过一系列创新算法设计显著提高了训练效率。

核心特点

  • 高效性:利用直方图近似和基于梯度的单边采样等技术,大幅减少计算量。
  • 低内存消耗:通过叶子权重直方图存储方式,极大降低了内存使用。
  • 高并行性:支持特征并行、数据并行和投票并行等多种并行策略,加速训练过程。
  • 灵活性:支持自定义目标函数和评估指标,满足多样化需求。
二、核心技术解析
1. 直方图近似(Histogram Approximation)

传统的GBDT方法在每一轮迭代中需要遍历所有数据来计算梯度,这在大数据场景下极为耗时。LightGBM引入了直方图的概念,将连续的特征值离散化为几个区间,仅需统计每个区间内的样本数量和梯度统计量,从而大大减少了计算量,加速了训练过程。
在这里插入图片描述

2. 基于梯度的单边采样(Gradient-Based One-Side Sampling, GOSS)

GOSS是一种有效的样本抽样策略,它根据样本的梯度大小进行有偏抽样,保留梯度较大的样本和一部分梯度较小的样本,这样既保留了重要信息,又大幅度减少了计算量,进一步提升了效率。
在这里插入图片描述

3. 特征并行与数据并行
  • 特征并行:将特征分配到不同的机器上进行独立的直方图构建,然后合并这些直方图,适用于特征维度较高的情况。
  • 数据并行:将数据集分割到不同机器,每台机器上分别建立自己的决策树,最后汇总决策树结果,适用于大数据集。
    在这里插入图片描述
三、与其他GBDT实现的对比

与XGBoost相比,LightGBM在训练速度和内存使用上通常表现更优,特别是在数据量较大时。然而,XGBoost提供了更多的调参选项,对于高度定制化的任务可能更为灵活。两者各有千秋,选择应依据具体任务需求。

四、实践应用与调参技巧

应用领域:LightGBM广泛应用于推荐系统、搜索引擎排名、金融风控、医疗诊断等多个领域,以其高效、准确的特性解决了一系列实际问题。

调参建议

  • 学习率:初始值可设为0.1,过拟合时减小。
  • 树的最大深度:默认31,可根据数据复杂度调整。
  • 叶子节点最小样本数:控制模型复杂度,避免过拟合。
  • 特征抽样比例:通过调整feature_fraction参数平衡模型复杂度与性能。

以下是一个使用Python和LightGBM库进行分类任务的基本示例代码。这个例子中,我们将使用经典的鸢尾花(Iris)数据集来训练一个简单的LightGBM模型,并进行基本的模型评估。代码仅供参考🐶

# 导入所需库
import lightgbm as lgb
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, classification_report# 加载数据
iris = load_iris()
X = iris.data
y = iris.target# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 转换数据格式为LightGBM所需的类型
lgb_train = lgb.Dataset(X_train, label=y_train)
lgb_eval = lgb.Dataset(X_test, label=y_test, reference=lgb_train)# 设置参数
params = {'boosting_type': 'gbdt','objective': 'multiclass','num_class': 3, # 因为鸢尾花数据集有3个类别'metric': 'multi_logloss','num_leaves': 31,'learning_rate': 0.1,'feature_fraction': 0.9,'bagging_fraction': 0.8,'bagging_freq': 5,'verbose': 0
}# 训练模型
gbm = lgb.train(params,lgb_train,num_boost_round=20, # 可以根据需要调整迭代轮数valid_sets=lgb_eval,early_stopping_rounds=5)# 预测
y_pred = gbm.predict(X_test)
y_pred_class = y_pred.argmax(axis=1) # 将概率转换为类别# 评估
accuracy = accuracy_score(y_test, y_pred_class)
print("Accuracy:", accuracy)
print("\nClassification Report:\n", classification_report(y_test, y_pred_class))

这段代码首先导入必要的库和数据集,然后划分训练集和测试集。接着,它将数据转换为LightGBM可以处理的格式,并定义了模型的参数。之后,模型通过训练数据进行训练,并在测试集上进行预测。最后,我们计算并打印出模型的准确率和分类报告,以便评估模型的表现。

五、结论

LightGBM作为GBDT家族中的佼佼者,凭借其高效的算法设计和优异的性能表现,成为了现代机器学习领域不可或缺的工具之一。无论是处理大规模数据集,还是追求模型训练速度与资源效率的平衡,LightGBM都展现出了强大的竞争力。随着算法的持续优化和社区的不断贡献,我们有理由相信,LightGBM将在未来机器学习的探索之路上扮演更加重要的角色。

End

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/350242.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Go语言结构体内嵌接口

前言 在golang中,结构体内嵌结构体,接口内嵌接口都很常见,但是结构体内嵌接口很少见。它是做什么用的呢? 当我们需要重写实现了某个接口的结构体的(该接口)的部分方法,可以使用结构体内嵌接口。 作用 继承赋值给接口…

激活和禁用Hierarchy面板上的物体

1、准备工作: (1) 在HIerarchy上添加待隐藏/显示的物体,名字自取。如:endImage (2) 在Inspector面板,该物体的名称前取消勾选(隐藏) (3) 在HIerarchy上添加按钮,名字自取。如:tip…

chatgpt的命令词

人不走空 🌈个人主页:人不走空 💖系列专栏:算法专题 ⏰诗词歌赋:斯是陋室,惟吾德馨 目录 🌈个人主页:人不走空 💖系列专栏:算法专题 ⏰诗词歌…

汽车级TPSI2140QDWQRQ1隔离式固态继电器,TMUX6136PWR、TMUX1109PWR、TMUX1133PWR模拟开关与多路复用器(参数)

1、TPSI2140-Q1 是一款隔离式固态继电器,专为高电压汽车和工业应用而设计。 TPSI2140-Q1 与 TI 具有高可靠性的电容隔离技术和内部背对背 MOSFET 整合在一起,形成了一款完全集成式解决方案,无需次级侧电源。 该器件的初级侧仅由 9mA 的输入电…

CSS实现经典打字小游戏《生死时速》

🌻 前言 CSS 中有这样一个模块:Motion Path 运动模块,它可以使元素按照自定义的路径进行移动。本文将为你讲解这个模块属性的使用,并且利用它实现我小时候电脑课经常玩的一个打字游戏:金山打字的《生死时速》。 &…

僵尸网络相关

个人电脑被植入木马之后,就会主动的连接被黑客控制的这个C&C服务器,然后这个服务器就会给被植入木马的这个电脑发指令,让他探测在他的局域网内还有没有其他的电脑了,如果有那么就继续感染同局域网的其他病毒,黑客就…

随机森林算法进行预测(+调参+变量重要性)--血友病计数数据

1.读取数据 所使用的数据是血友病数据,如有需要,可在主页资源处获取,数据信息如下: import pandas as pd import numpy as np hemophilia pd.read_csv(D:/my_files/data.csv) #读取数据 2.数据预处理 在使用机器学习方法时&…

手机在网状态-手机在网状态查询-手机在网站状态接口

查询手机号在网状态,返回正常使用、停机、未启用/在网但不可用、不在网(销号/未启用/异常)、预销户等多种状态 直连三大运营商,实时更新,可查询实时在网状态 高准确率-实时更新,准确率99.99% 接口地址&…

Matlab的Simulink系统仿真(simulink调用m函数)

这几天要用Simulink做一个小东西,所以在网上现学现卖,加油! 起初的入门是看这篇文章MATLAB 之 Simulink 操作基础和系统仿真模型的建立_matlab仿真模型搭建-CSDN博客 写的很不错 后面我想在simulink中调用m文件 在 Simulink 中调用 MATLA…

解决Maven依赖引入不成功的问题

解决Maven依赖引入不成功的问题 确认IntelliJ IDEA中Maven的设置是否正确。 file --> settings --> maven 清除无效的jar,进入本地仓库清除或利用bat工具 以下是bat工具内容,运行即可。【把仓库地址换成你自己的地址进行无效jar包清除】 echo o…

复制网页文字和图片到Word中-Word插件-大珩助手

问题整理: 为什么从浏览器的网页上复制文字和图片后,在Word中粘贴时图片无法显示?有没有插件可以将网页中的文字和图片复制到Office Word 中? Word大珩助手是一款功能丰富的Office Word插件,旨在提高用户在处理文档时…

Jenkins三种构建类型

目录 传送门前言一、概念二、前置处理(必做)1、赋予777权限2、让jenkins用户拥有root用户的kill权限3、要运行jar包端口号需要大于1024 三、自由风格软件项目(FreeStyle Project)(推荐)三、Maven项目&#…

Bigtable: A Distributed Storage System for Structured Data

2003年USENIX,出自谷歌,开启分布式大数据时代的三篇论文之一,底层依赖 GFS 存储,上层供 MapReduce 查询使用 Abstract 是一种分布式结构化数据存储管理系统,存储量级是PB级别。存储的数据类型和延时要求差异都很大。…

植物ATAC-seq文献集锦(三)——果实发育篇

ATAC-seq在植物研究领域的应用我们已经介绍2期了,本期我们聚焦ATAC-seq技术在果实发育方向的应用案例。 植物ATAC-seq文献集锦(一)——基因组篇 植物ATAC-seq文献集锦(二)——生长发育篇 文献一:Ident…

electron基础使用

安装以及运行 当前node版本18,按照官网提供操作,npm init进行初始化操作,将index.js修改为main.js,执行npm install --save-dev electron。(这里我挂梯子下载成功了。),添加如下代码至package.…

【AI绘画】教你一个完美的文生图方法,简单易学好上手,新手也能轻松掌握Stable Diffusion使用!

当我们还在思索, AI(人工智能)是否能替代人类的地位, 它已悄然无声, 融入我们生活的点滴细节。 在艺术创作领域, AI技术作为核心力量,展现其无尽的魅力。 AI换脸、AI影像,AI角色、A…

Nas实现软路由OpenWrt安装

文章目录 基本配置步骤 基本配置 NAS:TS-264C 宇宙魔方 步骤 1.下载软路由OpenWrt 下载地址:https://openwrt.org/ 2.下载好以后,需要下载虚拟盘转换工具(StarWind V2V Convert) 下载地址:https://…

sprintboot容器功能

容器 容器功能Spring注入组件的注解Component,Controller,Service,Repository案例演示 Configuration应用实例传统方式使用Configuration 注意事项和细节 Import应用实例 ConditionalConditional介绍应用实例 ImportResource应用实例 配置绑定…

10 SpringBoot 静态资源访问

我们在开发Web项目的时候,往往会有很多静态资源,如html、图片、css等。那如何向前端返回静态资源呢? 以前做过web开发的同学应该知道,我们以前创建的web工程下面会有一个webapp的目录,我们只要把静态资源放在该目录下…

C#——正则表达式详情

正则表达式 正则表达式: 列如判断一个字符串是不是手机号,或者密码是否包含大小写数字等这些要求,可以把这些条件写成一个表达式 创建正则表达式 string s1 "1234adsab1KHGFJD"; // 创建正则时需要在字符串前面加上 Regex r new Regex(&q…