【python】OpenCV—Histogram Matching(9.2)

在这里插入图片描述

学习来自OpenCV基础(17)基于OpenCV、scikit-image和Python的直方图匹配

文章目录

  • 直方图匹配介绍
  • scikit-image 中的直方图匹配
  • 小试牛刀
  • 风格迁移

直方图匹配介绍

直方图匹配(Histogram Matching)是一种图像处理技术,旨在将一张图像的像素值分布调整到与另一张图像的像素值分布相匹配。这种技术在图像增强、颜色校正等任务中非常有用。以下是关于直方图匹配的详细解释:

在这里插入图片描述

一、定义与原理

定义: 直方图匹配又称为直方图规定化,是一种通过调整图像的像素值分布,使两张图像的直方图尽可能相似的图像增强方法。

原理: 基于直方图变换,通过调整图像的像素值,使得两张图像的直方图在形状和分布上尽可能一致。这通常涉及到将输入图像的像素值映射到输出图像的像素值,以实现两者之间的分布匹配

二、一般步骤

计算累积分布函数(CDF): 首先,计算原始图像和目标图像的直方图的累积分布函数(CDF)。CDF表示了从最小值到当前值的像素数占总像素数的比例。

像素值映射: 根据累积分布函数的关系,将原始图像的像素值映射到目标直方图的像素值。这个映射过程是直方图匹配的关键步骤。

应用映射函数: 对原始图像的所有像素应用映射函数,得到匹配后的图像。

三、数学表示

假设我们有一个输入图像 I I I 和一个目标图像 T T T,我们希望将输入图像的像素值映射到输出图像的像素值。这可以表示为:

O ( x , y ) = round ( T I ⋅ I ( x , y ) ) O(x, y) = \text{round}\left(\frac{T}{I} \cdot I(x, y)\right) O(x,y)=round(ITI(x,y))

其中, O ( x , y ) O(x, y) O(x,y) 是输出图像中的像素值, I ( x , y ) I(x, y) I(x,y) 是输入图像中的像素值, T T T 是目标图像的像素值范围。函数 round \text{round} round 将结果四舍五入到最近的整数。

四、应用场景

图像增强: 当图像的对比度较低或细节不明显时,可以使用直方图匹配来增强图像的视觉效果。

颜色校正: 当图像受到光照条件的影响或者摄像设备的色彩偏差时,可以使用直方图匹配来校正颜色。

风格迁移: 在计算机视觉中,可以使用直方图匹配来实现图像的风格迁移,将一个图像的风格应用于另一个图像。

五、注意事项

在进行直方图匹配时,需要注意不同图像之间的直方图可能具有不同的范围和分布,因此需要进行适当的归一化和调整。

直方图匹配可能无法完全消除图像之间的差异,因为它仅考虑了像素值的分布,而忽略了像素之间的空间关系

对于某些特定的应用场景,可能需要结合其他图像处理技术来进一步提高匹配效果。

scikit-image 中的直方图匹配

skimage.exposure.match_histograms 是 scikit-image 库中用于直方图匹配的一个函数。该函数用于将一个图像的直方图与另一个图像的直方图相匹配,从而实现图像亮度和对比度的调整。以下是该函数的中文文档,包含其功能描述、参数说明和示例。

skimage.exposure.match_histograms

一、功能描述:

该函数将源图像的直方图与目标图像的直方图进行匹配,从而改变源图像的像素值,使其直方图与目标图像的直方图尽可能相似。这在图像处理中常用于增强图像的对比度或使不同图像之间的亮度和对比度更加一致。

二、参数说明:

source: ndarray 类型,输入图像,即需要进行直方图匹配的源图像。

template: ndarray 类型,目标图像,即源图像直方图要匹配的目标。

multichannel: bool 类型,可选参数,默认为 False。如果为 True,则对多通道图像进行独立匹配。这要求源图像和目标图像具有相同数量的通道。

三、返回值:

matched:ndarray 类型,与源图像形状相同的数组,其中包含了匹配后的像素值。

小试牛刀

from skimage import exposure
import matplotlib.pyplot as plt
import argparse
import cv2# 构造参数解析器并解析参数
ap = argparse.ArgumentParser()
ap.add_argument("-s", "--source", required=True, help="Path to the input source image")
ap.add_argument("-r", "--reference", required=True, help="Path to the input reference image")
args = vars(ap.parse_args())# 加载源和参考图像
print("[INFO] Loading source and reference images...")
src = cv2.imread(args["source"])
ref = cv2.imread(args["reference"])# 确定我们是否执行多通道直方图匹配,然后执行直方图匹配本身
print("[INFO] Performing histogram matching...")
multi = True if src.shape[-1] > 1 else Falsematched = exposure.match_histograms(src, ref, multichannel=multi)
# This was in skimage.transform between 0.14.2. It was moved to skimage.exposure with 0.16.0.# cv2.imwrite("matched.jpg", matched)# 显示输出图像
cv2.imshow("Source", src)
cv2.imshow("Reference", ref)
cv2.imshow("Matched", matched)
cv2.waitKey(0)# 构造一个图形来显示应用直方图匹配前后每个通道的直方图图
(fig, axs) = plt.subplots(nrows=3, ncols=3, figsize=(8, 8))# 循环遍历源图像、参考图像和输出匹配图像
for (i, image) in enumerate((src, ref, matched)):# 转换图像从BGR到RGB通道顺序image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)# 按RGB顺序循环通道名称for (j, color) in enumerate(("red", "green", "blue")):# 计算当前通道的直方图并绘制它(hist, bins) = exposure.histogram(image[..., j], source_range="dtype")axs[j, i].plot(bins, hist/hist.max())# 计算当前通道的累积分布函数并绘制它(cdf, bins) = exposure.cumulative_distribution(image[..., j])axs[j, i].plot(bins, cdf)# 将当前图形的y轴标签设置为当前颜色通道的名称axs[j, 0].set_ylabel(color)# 设置轴标题
axs[0, 0].set_title("Source")
axs[0, 1].set_title("Reference")
axs[0, 2].set_title("Matched")# 显示输出图
plt.tight_layout()
plt.show()

运行

python matching.py -s source.jpg -r reference.jpg

输入的 source.jpg

在这里插入图片描述

输入的 reference.jpg

在这里插入图片描述

直方图 matching 的结果

在这里插入图片描述

看看绘制的 RGB 三通道的直方图(蓝色)以及各自通道上的累积分布函数曲线(橙色)的绘制

请添加图片描述

风格迁移

看了小试牛刀,立刻想到了风格迁移,试试

source 图片还是蒙娜丽莎

在这里插入图片描述

reference 图片换成星空

在这里插入图片描述

看看匹配后的结果

在这里插入图片描述

看看RGB各通道的直方图和累积分布函数曲线

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/351540.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【图论应用】使用多路图(multigraph)对上海地铁站点图建模,并解决最短路径问题

文章目录 1 前言2 导包导入数据集3 创建多路图,导入节点和边信息3 绘制线路图4 计算最短路径 1 前言 最近正在学习图神经网络,先pick up了一些最基础的图论知识并学习了一些好玩的应用。 本文启发于B站视频(BV1LY411R7HJ)&#…

经验分享,如何去除文本中的空格

有时候我们需要去掉一窜文本中的空格,这里分享一个好用的免费网站,可实现在线去除 网址:http://www.txttool.com/t/?idMzM4 使用截图:

redis 笔记2之哨兵

文章目录 一、哨兵1.1 简介1.2 实操1.2.1 sentinel.conf1.2.2 问题1.2.3 哨兵执行流程和选举原理1.2.4 使用建议 一、哨兵 1.1 简介 上篇说了复制,有个缺点就是主机宕机之后,从机只会原地待命,并不能升级为主机,这就不能保证对外…

牛客网华为机试java版

目录 HJ1 字符串最后一个单词的长度HJ2 计算某字符出现次数HJ3 明明的随机数HJ4 字符串分隔HJ5 进制转换HJ6 质数因子HJ7 取近似值HJ8 合并表记录HJ9 提取不重复的整数HJ26 字符串排序HJ80 整型数组合并HJ101 输入整型数组和排序标识,对其元素按照升序或降序进行排序…

困惑度作为nlp指标的理解示例

为了更清晰地说明困惑度的计算过程以及如何通过困惑度判断模型的优劣,我们可以通过一个简单的例子来演示。假设我们有一个非常简单的文本语料库和两个基础的语言模型进行比较。 示例文本 假设我们的文本数据包括以下两个句子: “cat sits on the mat”…

贷款投资决策和常用财务函数

前段时间上了一门excel操作的课,本文结合其中介绍财务函数以及投资决策分析相关的部分,对贷款中的现金流计算进行深入的分析。 以等额本息产品为例进行实操计算,假设某产品本金12000元,期限12,IRR利率24%。每期还款113…

VScode中连接并使用docker容器

前提条件: 1.在windows下安装Docker Desktop(方法可见下面的教程) Docker Desktop 安装使用教程-CSDN博客 2.在vscode安装3个必备的插件 3.先在ubuntu中把docker构建然后运行 4.打开vscode,按下图顺序操作 调试好之后上传到git上,然后后面…

实验12 路由重分布

实验12 路由重分布 一、 原理描述二、 实验目的三、 实验内容四、 实验配置五、 实验步骤 一、 原理描述 在大型网络的组建过程中,隶属不同机构的网络部分往往会根据自身的实际情况来选用路由协议。例如,有些网络规模很小,为了管理简单&…

《大数据分析》期末考试整理

一、单项选择题(1*9) 1.大数据发展历程:出现阶段、热门阶段和应用阶段 P2 2.大数据影响 P3 1)大数据对科学活动的影响 2)大数据对思维方式的影响 3)大数据对社会发展的影响 4)大数…

华为云EI生态

1、人工智能技术趋势 2、华为AI发展思路 3、华为云EI:让企业更智能 4、华为云服务全景图 5、基础平台类服务 6、MLS:解决特性到模型应用的完整过程 7.DLS 8.GES超大规模一体化图分析与查询 9、EI视觉认知 10、EI语音语义 11、OCR:提供高精度光学文字自动…

Oracle 打开钱包 ORA-28368: cannot auto-create wallet

ORA-28368: cannot auto-create wallet 开启钱包抱错,看下钱包信息 SQL> select * from v$encryption_wallet;WRL_TYPE -------------------- WRL_PARAMETER -------------------------------------------------------------------------------- STATUS ------…

[Golang] go-kit 介绍和使用 (微服务实现工具)

文章目录 1.go-kit 介绍1.1 go-kit 三层结构 2.go-kit 实例 1.go-kit 介绍 go-kit是一个分布式的开发工具集,在大型的组织(业务)中可以用来构建微服务,其解决了分布式系统中大多数常见问题,因此,使用者可以…

Qt自定义日志输出

Qt自定义日志输出 简略版&#xff1a; #include <QApplication> #include <QDebug> #include <QDateTime> #include <QFileInfo> // 将日志类型转换为字符串 QString typeToString(QtMsgType type) {switch (type) {case QtDebugMsg: return "D…

3D ToF赋能小米CyberDog 2提升视觉灵敏度

随着科技的进步,智能机器人越来越多地融入我们的日常生活。其中,CyberDog 2作为一款前沿的四足机器人,凭借其出色的视觉灵敏度和多功能技术配备,受到了广泛的关注。本文将重点探讨CyberDog 2的视觉系统,尤其是其四种不同类型的摄像头如何共同提升其视觉灵敏度,以及激光传…

《C语言》文件操作

文章目录 一、认识文件1、文件的概念2、程序文件3、数据文件4、文件名 三、二进制文件和文本文件四、文件的打开和关闭1、流2、标准流3、文件指针4、文件的关闭和打开 四、文件的顺序读写文件的随机读写1、fseek2、ftell3、rewind4.int origin 一、认识文件 主要讨论数据文件 1…

ESP32 IDF ADF 加入音频

需要把mp3制作成音频bin 用ADF自带工具 果用户需要生成自己的 audio-esp.bin&#xff0c;则需要执行 mk_audio_bin.py 脚本&#xff08;位于 $ADF_PATH/tools/audio_tone/mk_audio_tone.py&#xff09;&#xff0c;并且指定相关文件的路径。 源 MP3 文件在 tone_mp3_folder …

零基础开始学习鸿蒙开发-@State的使用以及定义

1.State组件介绍 首先定义 State为鸿蒙开发的一个状态组件&#xff0c;当它修饰的组件发生改变时&#xff0c;UI也会相应的刷新&#xff0c;简单介绍就是这样&#xff0c;下面我们用代码去体会一下。 2.定义DeliverParam类 首先定义一个模型类&#xff0c;类里面定义一个构造…

安卓在Fragment控制状态栏显示隐藏

废话不多上效果 隐藏 显示 核心代码 首先是Framgrent package com.zx.tab;import android.content.Context; import android.os.Bundle; import android.view.LayoutInflater; import android.view.View; import android.view.ViewGroup; import android.widget.Button;impor…

技巧解析,如何向Kimi提问才能写出更好的论文?

学境思源&#xff0c;一键生成论文初稿&#xff1a; AcademicIdeas - 学境思源AI论文写作 今天为大家整理、分享的Kimi提问技巧&#xff0c;将对论文写作的各个阶段提供帮助&#xff0c;可以以此来辅助学术论文撰写。 在此之前&#xff0c;先为大家科普一个概念——信息熵&am…

爱了爱了,11款超良心App推荐!

AI视频生成&#xff1a;小说文案智能分镜智能识别角色和场景批量Ai绘图自动配音添加音乐一键合成视频https://aitools.jurilu.com/今天&#xff0c;我们向你推荐十款与众不同但又不错的win10软件&#xff0c;它们都有各自的功能和优点&#xff0c;相信你一定会喜欢。 1.图片处…