齐普夫定律在循环神经网络中的语言模型的应用

目录

  • 齐普夫定律解释
    • 公式解释
    • 图与公式的关系
    • 代码与图的分析
    • 结论
  • 使用对数表达方式的原因
    • 1. 线性化非线性关系
    • 2. 方便数据可视化和分析
    • 3. 降低数值范围
    • 4. 方便参数估计
    • 公式详细解释
    • 结论

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
来自:https://zh-v2.d2l.ai/chapter_recurrent-neural-networks/language-models-and-dataset.html

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

齐普夫定律解释

齐普夫定律(Zipf’s Law)是一种描述自然语言中单词频率分布的经验法则,它指出在一个文本或语料库中,单词的频率与其出现的排名成反比关系。具体来说,频率最高的单词出现的次数最多,排名第二的单词出现的次数大约是最高频单词的一半,排名第三的单词出现次数是最高频单词的三分之一,依此类推。

公式解释

齐普夫定律的数学表达式可以表示为:

n i ∝ 1 i α n_i \propto \frac{1}{i^\alpha} niiα1

其中, n i n_i ni 表示第 ( i ) 个单词的频率,( i ) 是该单词的排名,( \alpha ) 是一个常数。为了便于理解,这个公式可以变形为:

[ n_i = \frac{C}{i^\alpha} ]

其中 ( C ) 是一个归一化常数。

在图8.3.7和8.3.8中,这个公式被进一步转化为对数形式,以便在对数坐标系中表现出线性关系:

[ \log n_i = -\alpha \log i + c ]

这里,( \log n_i ) 是单词频率的对数,( \log i ) 是单词排名的对数,( \alpha ) 是斜率,( c ) 是截距。

图与公式的关系

在图中绘制了词频与排名的对数图。通过对图像进行对数变换,可以观察到频率与排名之间的关系是否遵循齐普夫定律。如果单词频率与排名在对数坐标系中呈现一条直线,这意味着词频与排名确实遵循齐普夫定律,即:

[ \log n_i = -\alpha \log i + c ]

从图中我们可以看到,词频分布在对数坐标系中近似为一条直线,这验证了齐普夫定律的正确性。

代码与图的分析

从代码和图中,我们可以看到以下几个步骤:

  1. 统计词频:读取文本数据并进行分词,统计每个单词的出现频率。
  2. 排序:根据单词的出现频率对单词进行排序,得到每个单词的排名。
  3. 绘制图形:在对数坐标系中绘制单词的频率和排名的关系图。

代码示例如下:

import random
import torch
from d2l import torch as d2ltokens = d2l.tokenize(d2l.read_time_machine())
corpus = [token for line in tokens for token in line]
vocab = d2l.Vocab(corpus)
vocab.token_freqs[:10]freqs = [freq for token, freq in vocab.token_freqs]
d2l.plot(freqs, xlabel='token: x', ylabel='frequency: n(x)',xscale='log', yscale='log')

上面的代码统计了文本数据中的词频,并在对数坐标系中绘制了词频图。

结论

通过以上分析,我们可以理解齐普夫定律的基本概念及其数学表示方式,并通过代码和图形验证了齐普夫定律在自然语言词频分布中的应用。具体地,通过观察词频和排名在对数坐标系中的线性关系,我们可以确认自然语言中的单词频率确实遵循齐普夫定律。

在这里插入图片描述
在这里插入图片描述

使用对数表达方式的原因

使用对数表达方式([ \log n_i = -\alpha \log i + c ])的原因主要有以下几点:

1. 线性化非线性关系

齐普夫定律本身是一个非线性关系:

[ n_i \propto \frac{1}{i^\alpha} ]

通过取对数,两边都取对数后变为线性关系:

[ \log n_i = -\alpha \log i + c ]

这使得我们可以用直线来描述这个关系,而直线在统计学和数据分析中更容易处理和理解。

2. 方便数据可视化和分析

对数坐标系能够更直观地展示数据的幂律分布特性。在对数坐标系中,幂律分布的数据点会呈现为一条直线,这使得我们可以更容易地识别和验证数据是否符合齐普夫定律。

在图中,横轴(单词排名)和纵轴(单词频率)都取对数,如果数据点近似排列成一条直线,就说明词频分布符合齐普夫定律。这种图形化表示使得观察和分析数据的分布规律变得直观和简单。

3. 降低数值范围

自然语言中的单词频率差异很大,频率最高的单词和频率最低的单词可能相差几个数量级。直接使用原始数据进行分析和可视化会遇到数值范围过大的问题,导致图形难以阅读和解释。而通过取对数,可以压缩数据的范围,使得不同频率的单词在图中更紧凑地展示,便于比较和分析。

4. 方便参数估计

在对数空间中,线性回归可以用来估计幂律分布中的参数。通过线性回归,我们可以得到斜率 ( -\alpha ) 和截距 ( c ),进而估计出原始幂律分布的参数。这在统计建模和参数估计中非常实用。

公式详细解释

原始齐普夫定律公式:

[ n_i \propto \frac{1}{i^\alpha} ]

取对数后变为:

[ \log n_i = \log \left( \frac{C}{i^\alpha} \right) ]

其中 ( C ) 是归一化常数,进一步分解:

[ \log n_i = \log C - \alpha \log i ]

将 ( \log C ) 记作 ( c )(因为 ( C ) 是常数,所以 ( \log C ) 也是常数),最终得到:

[ \log n_i = -\alpha \log i + c ]

结论

通过使用对数表达方式,我们将非线性的幂律关系转化为线性关系,使得数据可视化、分析和参数估计变得更加直观和方便。这种方法不仅简化了分析过程,也增强了结果的解释力和可视化效果。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/352669.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JMU 数科 数据库与数据仓库期末总结(4)实验设计题

E-R图 实体-关系图 E-R图的组成要素主要包括: 实体(Entity):实体代表现实世界中可相互区别的对象或事物,如顾客、订单、产品等。在图中,实体通常用矩形表示,并在矩形内标注实体的名称。 属性…

优化:Day52 动态规划part10

LC300最长递增子序列 dp数组中dp[i]的含义是:以nums[i]结尾的子序列中最长递增子序列的长度为dp[i]最长连续递增子序列 非连续最长递增子序列 如果是连续的,只需要nums[i]>nums[i-1]就将dp值1,但是如果是非连续的,nums[i]之前…

[vue2]深入理解路由

本节目标 单页应用程序路由概念VueRouter基本使用组件分类存放路由模块封装声明式导航其他路由配置路由模式编程式导航案例-面经基础版 单页应用程序 单页应用程序(SPA): 所有的功能都在一个HTML页面上实现 网易云音乐: 网易云音乐 多页应用程序(MPA): 不同功能通过切换不同…

Python | Leetcode Python题解之第162题寻找峰值

题目: 题解: class Solution:def findPeakElement(self, nums: List[int]) -> int:n len(nums)# 辅助函数,输入下标 i,返回 nums[i] 的值# 方便处理 nums[-1] 以及 nums[n] 的边界情况def get(i: int) -> int:if i -1 or…

Appium+python自动化(十二)- Android UIAutomator终极定位凶器(超详解)

宏哥微信粉丝群:https://bbs.csdn.net/topics/618423372 有兴趣的可以扫码加入 简介 乍眼一看,小伙伴们觉得这部分其实在异性兄弟那里就做过介绍和分享了,其实不然,上次介绍和分享的大哥是uiautomatorviewer,是一款定…

编程精粹—— Microsoft 编写优质无错 C 程序秘诀 03:强化你的子系统

这是一本老书,作者 Steve Maguire 在微软工作期间写了这本书,英文版于 1993 年发布。2013 年推出了 20 周年纪念第二版。我们看到的标题是中译版名字,英文版的名字是《Writing Clean Code ─── Microsoft’s Techniques for Developing》&a…

docker怎么拉取全部镜像,打包所有镜像

因为docker,所以我把电脑上之前的镜像全部打包出来了 你们也可以打包,我提供一个脚本,你运行即可 export_docker.sh #!/bin/bash# 导出目录 EXPORT_DIR"docker_images_backup" mkdir -p "$EXPORT_DIR"# 获取所有镜像 …

一文看懂!iThenticate查重报告全解读

在科研界,原创性和知识产权保护的重要性不言而喻。iThenticate作为全球领先的文献比对和不端检测工具,为广大科研工作者提供了一道坚实的防线保障。据统计,全球有超过16000家学术机构、出版社、高校与企业使用iThenticate查重系统&#xff0c…

Dubbo-使用zookeeper作为注册中心时节点的概述

本文内容很容易理解,会阐述当dubbo使用zookeeper作为注册中心时候,zookeeper节点是什么样子的 本文的代码使用的dubbo版本是2.7.x,几年前的版本了,但是不影响探究 首先我们创建一个简单的maven项目,然后写出一段dubb…

黑马苍穹外卖2 员工的增查改+异常处理+ThreadLocal

员工管理 新增员工 Controller: PostMapping//post类型的请求ApiOperation("添加员工")public Result save(RequestBody EmployeeDTO employeeDTO) {log.info("新增员工{}", employeeDTO);employeeService.save(employeeDTO);return Result.su…

有监督学习——梯度下降

1. 梯度下降 梯度下降(Gradient Descent)是计算机计算能力有限的条件下启用的逐步逼近、迭代求解方法,在理论上不保证下降求得最优解。 e.g. 假设有三维曲面表达函数空间,长(x)、宽(y)轴为子变量,高(z)是因变量&…

themleaf 页面弹层取值

themleaf 页面弹层取值 创作背景themleaf页面事件onbluronclick 页面参数提交 创作背景 个人在日常开发中,遇到了一个需求页面,页面交互较多,用到的事件也很丰富,特此记录,方便后续查找也方便有需要的开发者采用&…

软件测试期末复习

软件测试期末复习 Author 雨 2024年6月18日 1. 什么是软件测试 从一个通常为无限的执行域中选取合适的有限的测试用例,对程序所期望的行为进行动态验证的活动过程。 2. 软件测试的目的 尽早地发现软件的缺陷 3.什么是测试什么是缺陷 从软件内部看:软件开…

SpringCloudStream原理和深入使用

简单概述 Spring Cloud Stream是一个用于构建与共享消息传递系统连接的高度可扩展的事件驱动型微服务的框架。 应用程序通过inputs或outputs来与Spring Cloud Stream中binder对象交互,binder对象负责与消息中间件交互。也就是说:Spring Cloud Stream能…

探索Web Components

title: 探索Web Components date: 2024/6/16 updated: 2024/6/16 author: cmdragon excerpt: 这篇文章介绍了Web Components技术,它允许开发者创建可复用、封装良好的自定义HTML元素,并直接在浏览器中运行,无需依赖外部库。通过组合HTML模…

多尺度特征提取:原理、应用与挑战

多尺度 多尺度特征提取:原理、应用与挑战**原理****应用****挑战****总结** 多尺度特征提取:原理、应用与挑战 在计算机视觉、自然语言处理和信号处理等领域,有效地捕捉和解析数据的多种尺度特性是至关重要的。多尺度特征提取是一种技术&…

【机器学习】智能创意工厂:机器学习驱动的AIGC,打造未来内容新生态

🚀时空传送门 🔍机器学习在AIGC中的核心技术📕深度学习🎈生成对抗网络(GANs) 🚀机器学习在AIGC中的具体应用🍀图像生成与编辑⭐文本生成与对话系统🌠音频生成与语音合成 …

SpringMVC01-初始SpringMVC

SpringMVC 回顾MVC 什么是MVC MVC是模型(Model)、视图(View)、控制器(Controller)的简写,是一种软件设计规范。是将业务逻辑、数据、显示分离的方法来组织代码。MVC主要作用是降低了视图与业务逻辑间的双向偶合。MVC不是一种设计模式,MVC是一种架构模…

高通Android 12 右边导航栏改成底部显示

最近同事说需要修改右边导航栏到底部,问怎么搞?然后看下源码尝试下。 1、Android 12修改代码路径 frameworks/base/services/core/java/com/android/server/wm/DisplayPolicy.java a/frameworks/base/services/core/java/com/android/server/wm/Display…

【LeetCode:2786. 访问数组中的位置使分数最大 + 递归 + 记忆化缓存 + dp】

🚀 算法题 🚀 🌲 算法刷题专栏 | 面试必备算法 | 面试高频算法 🍀 🌲 越难的东西,越要努力坚持,因为它具有很高的价值,算法就是这样✨ 🌲 作者简介:硕风和炜,…