Python | 使用Matplotlib生成子图的示例

数据可视化在分析和解释数据的过程中起着举足轻重的作用。Python中的Matplotlib库提供了一个强大的工具包,用于制作各种图表和图表。一个突出的功能是它能够在单个图中生成子图,为以组织良好和结构化的方式呈现数据提供了有价值的工具。使用子图可以同时显示多个图,有助于改进基础数据的全面视觉表示。

使用Python的Matplotlib生成子图

有几种方法可以使用Python的Matplotlib生成子图。在这里,我们将探索一些常用的方法来使用Python的Matplotlib创建子图。

  • 使用Line Plot的多个子图
  • 使用Bar Plot的多个子图
  • 使用Pie Plot的多个子图
  • 自定义子图组合

使用Line Plot的多个子图

在本例中,代码利用Matplotlib生成一个2×2网格的线图,每个线图都基于示例数据描绘一个数学函数(正弦、余弦、正切和指数)。子图是使用plt.subplots函数创建和自定义的,每个子图都标有标题、线条颜色和图例。在调整布局以获得子图之间的最佳间距后,使用plt.show显示生成的可视化。

import matplotlib.pyplot as plt
import numpy as np# Example data
x = np.linspace(0, 10, 100)
y1 = np.sin(x)
y2 = np.cos(x)
y3 = np.tan(x)
y4 = np.exp(-x)# Creating Multiple Subplots for Line Plots
fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(10, 8))# Line Plot 1
axes[0, 0].plot(x, y1, label='sin(x)', color='blue')
axes[0, 0].set_title('Line Plot 1')
axes[0, 0].legend()# Line Plot 2
axes[0, 1].plot(x, y2, label='cos(x)', color='orange')
axes[0, 1].set_title('Line Plot 2')
axes[0, 1].legend()# Line Plot 3
axes[1, 0].plot(x, y3, label='tan(x)', color='green')
axes[1, 0].set_title('Line Plot 3')
axes[1, 0].legend()# Line Plot 4
axes[1, 1].plot(x, y4, label='exp(-x)', color='red')
axes[1, 1].set_title('Line Plot 4')
axes[1, 1].legend()# Adjusting layout
plt.tight_layout()# Show the plots
plt.show()

在这里插入图片描述

使用Bar Plot的多个子图

在这个例子中,Python代码利用Matplotlib生成一个2×2的子图网格,每个子图都包含一个条形图。示例数据由四个类别(A、B、C、D)和四个集合的对应值组成。子图函数用于创建子图网格,然后为每组值生成单独的条形图。生成的可视化显示了条形图1到条形图4中各类别值的分布,每个子图都有自定义的颜色和标题。为了清晰起见,布局进行了调整,合并的子图集使用plt.show()显示。

import matplotlib.pyplot as plt
import numpy as np# Example data for bar plots
categories = ['A', 'B', 'C', 'D']
values1 = [3, 7, 1, 5]
values2 = [5, 2, 8, 4]
values3 = [2, 6, 3, 9]
values4 = [8, 4, 6, 2]# Creating Multiple Subplots for Bar Plots
fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(10, 8))# Bar Plot 1
axes[0, 0].bar(categories, values1, color='blue')
axes[0, 0].set_title('Bar Plot 1')# Bar Plot 2
axes[0, 1].bar(categories, values2, color='orange')
axes[0, 1].set_title('Bar Plot 2')# Bar Plot 3
axes[1, 0].bar(categories, values3, color='green')
axes[1, 0].set_title('Bar Plot 3')# Bar Plot 4
axes[1, 1].bar(categories, values4, color='red')
axes[1, 1].set_title('Bar Plot 4')# Adjusting layout
plt.tight_layout()# Show the plots
plt.show()

在这里插入图片描述
使用Pie Plot的多个子图

在这个例子中,Python代码使用Matplotlib创建了一个2×2的饼图网格。每个图表都表示不同的分类数据,并具有指定的标签、大小和颜色。plt.subplots函数生成子图网格,然后使用pie函数用饼图填充每个子图。该代码调整布局的间距,并显示饼图的可视化表示。

import matplotlib.pyplot as plt# Example data for pie charts
labels1 = ['Category 1', 'Category 2', 'Category 3']
sizes1 = [30, 40, 30]labels2 = ['Section A', 'Section B', 'Section C']
sizes2 = [20, 50, 30]labels3 = ['Apple', 'Banana', 'Orange', 'Grapes']
sizes3 = [25, 30, 20, 25]labels4 = ['Red', 'Green', 'Blue']
sizes4 = [40, 30, 30]# Creating Multiple Subplots for Pie Charts
fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(10, 8))# Pie Chart 1
axes[0, 0].pie(sizes1, labels=labels1, autopct='%1.1f%%', colors=['red', 'yellow', 'green'])
axes[0, 0].set_title('Pie Chart 1')# Pie Chart 2
axes[0, 1].pie(sizes2, labels=labels2, autopct='%1.1f%%', colors=['blue', 'orange', 'purple'])
axes[0, 1].set_title('Pie Chart 2')# Pie Chart 3
axes[1, 0].pie(sizes3, labels=labels3, autopct='%1.1f%%', colors=['orange', 'yellow', 'green', 'purple'])
axes[1, 0].set_title('Pie Chart 3')# Pie Chart 4
axes[1, 1].pie(sizes4, labels=labels4, autopct='%1.1f%%', colors=['red', 'green', 'blue'])
axes[1, 1].set_title('Pie Chart 4')# Adjusting layout
plt.tight_layout()# Show the plots
plt.show()

在这里插入图片描述
自定义子图组合

在这个例子中,Python代码使用Matplotlib生成一个具有2×3子图网格的图。示例数据包括正弦和余弦线图、条形图、饼图以及二次和指数函数的自定义图。每个子图都使用标题、标签和图例进行自定义。该代码展示了如何在单个图中创建子图的视觉多样性布局,展示了Matplotlib对各种图类型的多功能性。

import matplotlib.pyplot as plt
import numpy as np# Example data
x = np.linspace(0, 10, 100)
y1 = np.sin(x)
y2 = np.cos(x)# Example data for bar plots
categories = ['A', 'B', 'C', 'D']
values = [3, 7, 1, 5]# Example data for pie chart
labels = ['Category 1', 'Category 2', 'Category 3']
sizes = [30, 40, 30]# Example data for custom layout
x_custom = np.linspace(0, 5, 50)
y3 = x_custom**2
y4 = np.exp(x_custom)# Creating Multiple Subplots
fig, axes = plt.subplots(nrows=2, ncols=3, figsize=(15, 8))# Creating Multiple Subplots of Line Plots
axes[0, 0].plot(x, y1, label='sin(x)', color='blue')
axes[0, 0].set_title('Line Plot 1')
axes[0, 0].legend()axes[0, 1].plot(x, y2, label='cos(x)', color='orange')
axes[0, 1].set_title('Line Plot 2')
axes[0, 1].legend()# Creating Multiple Subplots of Bar Plots
axes[0, 2].bar(categories, values, color='green')
axes[0, 2].set_title('Bar Plot')# Creating Multiple Subplots of Pie Charts
axes[1, 0].pie(sizes, labels=labels, autopct='%1.1f%%', colors=['red', 'yellow', 'green'])
axes[1, 0].set_title('Pie Chart')# Creating a custom Multiple Subplots
axes[1, 1].plot(x_custom, y3, label='x^2', color='purple')
axes[1, 1].set_title('Custom Plot 1')
axes[1, 1].legend()axes[1, 2].plot(x_custom, y4, label='e^x', color='brown')
axes[1, 2].set_title('Custom Plot 2')
axes[1, 2].legend()# Adjusting layout
plt.tight_layout()# Show the plots
plt.show()

在这里插入图片描述

总结

Matplotlib的子图提供的灵活性允许在单个图中同时呈现多个图,增强了显示信息的清晰度和一致性。无论是组织折线图、条形图、饼图还是自定义图,理解子图网格、轴对象和“子图”功能的概念都是必不可少的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/353889.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

北京崇文门中医医院贾英才:中医传承的践行者

贾英才,一位在北京崇文门中医医院出诊的杰出中医执业医师,在中医领域深耕近三十载,以其精湛的医术和独特的诊疗验方体系,赢得了广大患者的信赖与认可。 贾英才自幼便深受家学熏陶,中医的种子早早在他心中扎根。成长于中…

2024 年 Python 基于 Kimi 智能助手 Moonshot Ai 模型搭建微信机器人(更新中)

注册 Kimi 开放平台 Kimi:https://www.moonshot.cn/ Kimi智能助手是北京月之暗面科技有限公司(Moonshot AI)于2023年10月9日推出的一款人工智能助手,主要为用户提供高效、便捷的信息服务。它具备多项强大功能,包括多…

深入理解计算机系统 CSAPP 家庭作业6.35

第一步先求(S,E,B,m) 题目说共C128个字节,块大小B为16个字节,那就是分为八组:0,1,2,3,4,5,6,7.然后每组存4个int 每个4字节 CB*E*S .B16 ,直接映射的E就是1,所以S8 (S,E,B,m)(8,1,16,7) C128M128s3b4t0 sizeof(int)0100地址(二进制)COCIsrc[0][0]00000000000000组0src[0][1…

上市公司-社会责任报告、ESG报告文本(2006-2023年)

上市公司社会责任报告是企业对外公布的一份关于其社会责任实践和成果的详细文件,涵盖环境保护、社会贡献和公司治理等方面的表现。通常包含公司在减少环境影响、提升社会福祉、维护员工权益、促进社区发展以及确保透明和道德的管理实践等方面的信息和数据。有助于了…

linux 线程

文章目录 1.线程概念线程优点线程缺点 2.Linux线程和进程3. Linux线程控制线程创建---pthread_create线程等待---pthread_join线程退出线程分离---pthread_detach 1.线程概念 进程内核数据结构 进程代码和数据 我们的代码在进程中,全部都是串行调用的 进程创建&am…

入侵检测系统(IDS)

入侵检测 入侵检测(Intrusion Detection)是指发现或确定入侵行为存在或出现的动作,也就是发现、跟踪并记录计算机系统或计算机网络中的非授权行为,或发现并调查系统中可能为视图入侵或病毒感染所带来的异常活动。 入侵检测系统 …

upload-labs第十三关教程

upload-labs第十三关教程 第十三关一、源代码分析代码审计 二、绕过分析1)0x00绕过a.上传eval.pngb.使用burpsuite进行拦截修改之前:修改之后:进入hex模块: c.放包上传成功: d.使用中国蚁剑进行连接 2)%00绕…

20240619在飞凌OK3588-C的LINUX系统启动的时候拉高3个GPIO口141-111-120【方法一】

20240619在飞凌OK3588-C的LINUX系统启动的时候拉高3个GPIO口141-111-120【方法一】 2024/6/19 16:12 缘起:在凌OK3588-C的LINUX R4系统启动的时候,需要拉高GPIO4_B5、GPIO3_B7和GPIO3_D0。 修改rcS,在系统启动的时候,即可拉高。 通…

极具吸引力的小程序 UI 风格

极具吸引力的小程序 UI 风格

002.Linux CentOS7 安装

我 的 个 人 主 页:👉👉 失心疯的个人主页 👈👈 入 门 教 程 推 荐 :👉👉 Python零基础入门教程合集 👈👈 虚 拟 环 境 搭 建 :👉&…

湖北文理学院2024年成人高等继续教育招生简章

湖北文理学院,作为一所历史悠久、底蕴深厚的学府,始终致力于为社会各界培养具备高素质、专业技能和创新精神的优秀人才。在成人高等继续教育领域,湖北文理学院更是凭借其卓越的教学质量和丰富的教育资源,吸引了众多有志于提升自身…

ThinkPHP5大学生社会实践管理系统

有需要请加文章底部Q哦 可远程调试 ThinkPHP5大学生社会实践管理系统 一 介绍 大学生社会实践管理系统基于ThinkPHP5框架开发,数据库mysql,前端bootstrap。系统角色分为用户和管理员。 技术栈:ThinkPHP5mysqlbootstrapphpstudyvscode 二 功…

Gobject tutorial 七

The GObject base class GObject是一个fundamental classed instantiatable type,它的功能如下: 内存管理构建/销毁实例set/get属性方法信号 /*** GObjectClass:* g_type_class: the parent class* constructor: the constructor function is called by g_object…

基于单片机的智能窗户控制系统的设计

摘 要: 根据单片机技术和现代传感器技术 , 本文主要针对基于单片机的智能窗户控制系统的设计进行探讨 , 仅供参考 。 关键词: 单片机 ; 智能窗户 ; 控制系统 ; 设计 在现代科学技术持续发展的带…

【精品方案】产业园区数字孪生规划方案(39页PPT)

引言:随着数字化和智能化技术的快速发展,传统产业园区面临着转型升级的重大机遇。数字孪生技术作为一种将物理世界与数字世界紧密结合的创新技术,为产业园区的规划、建设和运营管理提供了全新的解决方案。本方案旨在通过构建产业园区数字孪生…

Upload-Labs:Pass - 1(JS前端白名单)

Pass_1 1. 上传测试2. 代码审计**获取文件输入的值**:**检查是否选择了文件**:**定义允许的文件类型**:**提取文件的扩展名**:**检查文件类型是否允许上传**:**构建错误消息并提醒用户**: 3.绕过思路3.1 将…

集合系列(二十六) -利用LinkedHashMap实现一个LRU缓存

一、什么是 LRU LRU是 Least Recently Used 的缩写,即最近最少使用,是一种常用的页面置换算法,选择最近最久未使用的页面予以淘汰。 简单的说就是,对于一组数据,例如:int[] a {1,2,3,4,5,6},…

一文带你读懂向量数据库(上)

大数据产业创新服务媒体 ——聚焦数据 改变商业 什么是向量数据库? 向量数据库的概述:向量数据库是一种数据库,专门设计用于存储和查询向量数据,常用于机器学习和数据科学领域。向量数据库可以高效地存储大规模的向量数据&#x…

STM32HAL库--NVIC和EXTI

1. 外部中断实验 1.1 NVIC和EXTI简介 1.1.1 NVIC简介 NVIC 即嵌套向量中断控制器,全称 Nested vectored interrupt controller。是ARM Cortex-M处理器中用于管理中断的重要组件。负责处理中断请求,分配优先级,并协调中断的触发和响应。 它是…

【千帆AppBuilder】你有一封邮件待查收|未来的我,你好吗?欢迎体验AI应用《未来信使》

我在百度智能云千帆AppBuilder开发了一款AI原生应用,快来使用吧!「未来信使」:https://appbuilder.baidu.com/s/Q1VPg 目录 背景人工智能未来的信 未来信使功能介绍Prompt组件 千帆社区主要功能AppBuilderModelBuilder详细信息 推荐文章 未来…