前言:Hello大家好,我是小哥谈。论文提出了重新参数化再聚焦卷积RefConv作为常规卷积层的替代品,它是一个即插即用模块,可以在没有任何推理成本的情况下提高性能。具体来说,在给定预训练模型的情况下,RefConv对从预训练模型继承的基核进行可训练的再聚焦变换,以建立参数之间的联系。本文所做出的改进就是在YOLOv8中引入重新参数化再聚焦卷积RefConv,希望大家学习之后能够有所收获~!🌈
目录
🚀1.基础概念
🚀2.网络结构
🚀3.添加步骤
🚀4.改进方法
🍀🍀步骤1:创建RefConv.py文件
🍀🍀步骤2:block.py文件修改
🍀🍀步骤3:tasks.py文件修改
🍀🍀步骤4:创建自定义yaml文件
🍀🍀步骤5:新建train.py文件
🍀🍀步骤6:模型训练测试