运算放大器(运放)低通滤波反相放大器电路和积分器电路

低通滤波反相放大器电路

运放积分器电路请访问下行链接
运算放大器(运放)积分器电路

设计目标

输入ViMin输入ViMax输出VoMin输出VoMaxBW:fp电源Vee电源Vcc
–0.1V0.1V–2V2V2kHz–2.5V2.5V

设计说明

这款可调式低通反相放大器电路可将信号电平放大 26dB 或 20V/V。R2 和 C1 可设置此电路的截止频率。此电路的频率响应与无源 RC 滤波器的相同,除非输出按放大器的通带增益进行放大。低通滤波器通常用于音频信号链,此滤波器有时也称为低音增强滤波器
低通滤波反相放大器电路

低通滤波反相放大器电路,和下图区别,主要在于R2取值较小,使工作状态不同,和运放积分电路相似


在这里插入图片描述

运算放大器(运放)积分器电路,和上图区别,主要在于R2取值较大,致使信号主要从电容通过

设计说明

  1. C1 和 R2 可设置低通滤波器截止频率。
  2. 共模电压根据运算放大器的同相输入设置,在这种情况下,输入为 1/2 Vs。
  3. 使用高值电阻器可能会减小电路的相位裕度并在电路中引入额外的噪声。
  4. R2 和 R1 可设置电路增益。
  5. 为音频低音增强应用选择 2kHz 的极点频率 fp。
  6. 避免将电容负载直接放置在放大器的输出,从而更大限度减少稳定性问题。
  7. 大信号性能可能会受到压摆率的限制。因此,应检查数据表中的最大输出摆幅与频率间的关系图,从而更大限度减小转换导致的失真。
  8. 有关运算放大器线性运行区域、稳定性、转换导致的失真、电容负载驱动、驱动 ADC 和带宽的更多信息,请参阅“设计参考”部分。

设计步骤

下面给出了该电路的直流传递函数。
V o = V i × ( − R 2 R 1 ) Vo = Vi \times ( - \frac{R2}{R1} ) Vo=Vi×(R1R2)

  1. 为给定的通带增益选择电阻值。
    G a i n = R 2 R 1 = 20 V V ( 26 d B ) Gain = \frac{R_2}{R_1} = 20\frac{V}{V} (26dB) Gain=R1R2=20VV(26dB)
    R 1 = 1 k Ω R_1 = 1kΩ R1=1kΩ
    R 2 = G a i n × ( R 1 ) = 20 V V × 1 k Ω = 20 k Ω R_2 = Gain \times(R_1)= 20\frac{V}{V}\times 1kΩ=20kΩ R2=Gain×(R1)=20VV×1kΩ=20kΩ
  2. 选择低通滤波器极点频率 fp。
    f p = 2 k H z f_p=2kHz fp=2kHz
  3. 使用 R2 设置 fp 的位置,计算 C1。
    f p = 1 2 × π × R 2 × C 1 = 2 k H z f_p=\frac{1}{2 \times π \times R_2 \times C_1}=2kHz fp=2×π×R2×C11=2kHz
    C 1 = 1 2 × π × R 2 × f p = 1 2 × π × 20 K Ω × 2 K h z = 3.98 n F ≈ 3.9 n F ( S t a n d a r d V a l u e ) C_1=\frac{1}{2 \times π \times R_2 \times f _p}=\frac{1}{2 \times π \times 20K\Omega \times 2Khz}=3.98nF \approx3.9 nF (Standard Value) C1=2×π×R2×fp1=2×π×20KΩ×2Khz1=3.98nF3.9nF(StandardValue)
  4. 计算更大限度降低转换导致的失真所需的最小压摆率。
    V p = S R 2 × π × f p → S R > 2 × π × f p × V p V_p=\frac{SR}{2 \times π \times f_p } → SR > 2 \times π \times f_p \times V_p Vp=2×π×fpSRSR>2×π×fp×Vp
    S R > 2 × π × 2 k H z × 2 V = 0.025 V u s SR > 2 \times π \times 2kHz \times 2V = 0.025 \frac{V}{us} SR>2×π×2kHz×2V=0.025usV
  5. S R T L V 9002 = 2 V / µ s SR_{TLV9002} = 2V/µs SRTLV9002=2Vs,因此它满足该要求

设计仿真

交流仿真结果

交流仿真结果

交流仿真结果

瞬态仿真结果

100Hz、0.2Vpp 的正弦波可产生 4Vpp 的输出正弦波。
100Hz、0.2Vpp 的正弦波可产生 4Vpp 的输出正弦波

100Hz、0.2Vpp 的正弦波可产生 4Vpp 的输出正弦波

100kHz、0.2Vpp 的正弦波可产生 0.1Vpp 的输出正弦波。
100kHz、0.2Vpp 的正弦波可产生 0.1Vpp 的输出正弦波。

100kHz、0.2Vpp 的正弦波可产生 0.1Vpp 的输出正弦波。

设计采用的运算放大器TLV9002

Vss1.8V 至 5.5V
VinCM轨到轨
Vout轨到轨
Vos0.4mV
Iq60µA
Ib5pA
UGBW1MHz
SR2V/µs
通道数1、2、4

设计备选运算放大器OPA375

Vss2.25V 至 5.5V
VinCMVee 至 Vcc –1.2V
Vout轨到轨
Vos0.15mV
Iq890µA
Ib10pA
UGBW10MHz
SR4.75V/µs
通道数1

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/357727.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

支持 MKV、MP4、AVI、MPG 等格式视频转码器

一、简介 1、一款开源的视频转码器,适用于 Linux、Mac 和 Windows。它是一个免费的工具,由志愿者们开发,可以将几乎所有格式的视频转换为现代、广泛支持的编码格式。你可以在官网上下载该应用或源代码。该软件支持 MKV、MP4、AVI、MPG 等格式…

如何看待鸿蒙HarmonyOS?

鸿蒙系统,自2019年8月9日诞生就一直处于舆论风口浪尖上的系统,从最开始的“套壳”OpenHarmony安卓的说法,到去年的不再兼容安卓的NEXT版本的技术预览版发布,对于鸿蒙到底是什么,以及鸿蒙的应用开发的讨论从来没停止过。…

Java内存泄漏检测和分析介绍

在Java中,内存泄漏检测和分析是一个重要的任务,可以通过以下几种方式进行: 1. 使用VisualVM VisualVM是一个可视化工具,可以监控、分析Java应用程序的内存消耗。它可以显示堆内存、垃圾收集、线程等信息,并且可以对内…

图解注意力

图解注意力 Part #2: The Illustrated Self-Attention 在文章前面的部分,我们展示了这张图片来展示自注意力被应用于正在处理单词"it"的一层中: 在本节中,我们将看看这是如何完成的。请注意,我们将以一种试图理解单…

“论数据访问层设计技术及其应用”写作框架,系统架构设计师

论文真题 在信息系统的开发与建设中,分层设计是一种常见的架构设计方法,区分层次的目的是为了实现“高内聚低耦合”的思想。分层设计能有效简化系统复杂性,使设计结构清晰,便于提高复用能力和产品维护能力。一种常见的层次划分模…

CatBoost算法详解

CatBoost算法详解 CatBoost(Categorical Boosting)是由Yandex开发的一种基于梯度提升决策树(GBDT)的机器学习算法,特别擅长处理包含类别特征的数据集。它不仅在精度和速度上表现出色,还对类别特征有天然的…

DHCP原理1-单个局域网出现多个DHCP服务器会发生什么

1. 背景 DHCP全称是Dynamic Host Configuration Protocol。其协议标准是RFC1541(已被RFC2131取代),主要实现服务器向客户端动态分配IP地址(如IP地址、子网掩码、网关、DNS)和配置信息。其系统架构是标准的C/S架构。RFC…

嵌入式学习——数据结构(队列)——day50

1. 查找二叉树、搜索二叉树、平衡二叉树 2. 哈希表——人的身份证——哈希函数 3. 哈希冲突、哈希矛盾 4. 哈希代码 4.1 创建哈希表 4.2 5. 算法设计 5.1 正确性 5.2 可读性(高内聚、低耦合) 5.3 健壮性 5.4 高效率(时间复杂度&am…

长亭谛听教程部署和详细教程

PPT 图片先挂着 挺概念的 谛听的能力 hw的时候可能会问你用过的安全产品能力能加分挺重要 溯源反制 反制很重要感觉很厉害 取证分析 诱捕牵制 其实就是蜜罐 有模板直接爬取某些网页模板进行伪装 部署要求 挺低的 对linux内核版本有要求 需要root 还有系统配置也要修改 …

C#使用轻量级深度学习模型进行车牌颜色识别和车牌号识别

看到这个文章时候请注意这个不涉及到车牌检测,这个仅仅是车牌颜色和车牌号识别,如果想涉及到车牌检测可以参考这个博客:[C#]winform部署yolov7CRNN实现车牌颜色识别车牌号检测识别_c# yolo 车牌识别-CSDN博客 【训练源码】 https://github.…

基于YOLOv5的PCB板缺陷检测系统的设计与实现(PyQT页面+YOLOv5模型+数据集)

简介 随着电子设备的广泛应用,PCB(印刷电路板)作为其核心部件,其质量和可靠性至关重要。然而,PCB生产过程中常常会出现各种缺陷,如鼠咬伤、开路、短路、杂散、伪铜等。这些缺陷可能导致设备故障,甚至引发严重的安全问题。为了提高PCB检测的效率和准确性,我们基于YOLOv…

OpenAPI

大家好我是苏麟 , 今天带来一个前端生成接口的工具 . 官网 : GitHub - ferdikoomen/openapi-typescript-codegen: NodeJS library that generates Typescript or Javascript clients based on the OpenAPI specification 安装命令 npm install openapi-typescript-codegen --sa…

Mathtype7在Word2016中闪退(安装过6)

安装教程:https://blog.csdn.net/Little_pudding10/article/details/135465291 Mathtype7在Word2016中闪退是因为安装过Mathtype6,MathPage.wll和MathType Comm***.dotm),不会随着Mathtype的删除自动删除,而新版的Mathtype中的文件…

Pnpm:包管理的新星,如何颠覆 Npm 和 Yarn

在探索现代 JavaScript 生态系统时,我们常常会遇到新兴技术的快速迭代和改进。其中,包管理工具的发展尤为重要,因为它们直接影响开发效率和项目性能。最近,pnpm 作为一种新的包管理工具引起了广泛关注。它不仅挑战了传统工具如 np…

DS1339C串行实时时钟-国产兼容RS4C1339

RS4C1339串行实时时钟是一种低功耗的时钟/日期设备,具有两个可编程的一天时间报警器和一个可编程方波输出。地址和数据通过2线双向总线串行传输。时钟/日期提供秒、分钟、小时、天、日期、月份和年份信息。对于少于31天的月份,月末的日期会自动调整&…

SpringBootWeb 篇-入门了解 Vue 前端工程的创建与基本使用

🔥博客主页: 【小扳_-CSDN博客】 ❤感谢大家点赞👍收藏⭐评论✍ 文章目录 1.0 基于脚手架创建前端工程 1.1 基于 Vue 开发前端项目的环境要求 1.2 前端工程创建的方式 1.2.1 基于命令的方式来创建前端工程 1.2.2 使用图形化来创建前端工程 1.…

OpenCV机器学习-人脸识别

一 基本概念 1 计算机视觉与机器学习的关系 计算机视觉是机器学习的一种应用,而且是最有价的应用。 2 人脸识别 哈尔(haar)级联方法 Harr是专门为解决人脸识别而推出的; 在深度学习还不流行时,Harr已可以商用; 深度学习方法&am…

Springboot微服务整合缓存的时候报循环依赖的错误 两种解决方案

错误再现 Error starting ApplicationContext. To display the conditions report re-run your application with debug enabled. 2024-06-17 16:52:41.008 ERROR 20544 --- [ main] o.s.b.d.LoggingFailureAnalysisReporter : *************************** APPLI…

【chatgpt】train_split_test的random_state

在使用train_test_split函数划分数据集时,random_state参数用于控制随机数生成器的种子,以确保划分结果的可重复性。这样,无论你运行多少次代码,只要使用相同的random_state值,得到的训练集和测试集划分就会是一样的。…

【Git】win本地 git bash:Connect reset by 20.205.243.166 port22报错问题解决

win10 git bash 控制台 reset 22端口拒绝连接问题: Connection reset by 20.205.243.166 port 221、22端口 无法连接 ssh -T gitgithub.com2、尝试用443端口 仍然无法连接 ssh -T -P 443 gitgithub.com3、重写 git clone 地址 url,全局添加 https 前缀…