【Qwen2部署实战】Qwen2初体验:用Transformers打造智能聊天机器人

系列篇章💥

No.文章
1【Qwen部署实战】探索Qwen-7B-Chat:阿里云大型语言模型的对话实践
2【Qwen2部署实战】Qwen2初体验:用Transformers打造智能聊天机器人
3【Qwen2部署实战】探索Qwen2-7B:通过FastApi框架实现API的部署与调用
4【Qwen2部署实战】Ollama上的Qwen2-7B:一键部署大型语言模型指南
5【Qwen2部署实战】llama.cpp:一键部署高效运行Qwen2-7b模型
6【Qwen2部署实战】部署高效AI模型:使用vLLM进行Qwen2-7B模型推理

目录

  • 系列篇章💥
  • 概述
  • 基本用法
    • 加载预训练模型
    • 加载分词器模型
    • 定义提示message
    • 模版格式化消息
    • 根据输入ID获取生成ID
    • 解码生成ID获取内容
  • 流式输出
  • 结语


概述

在这个信息爆炸的时代,人工智能技术正逐渐渗透到我们生活的方方面面。特别是在自然语言处理领域,大型语言模型如Qwen2正以其卓越的对话能力,为用户带来前所未有的交互体验。本文将详细介绍如何利用强大的transformers库与Qwen2-7B-Instruct模型进行智能对话,无论是在流式模式还是非流式模式下,都能轻松实现。

基本用法

与Qwen2-Instruct的对话非常简单。通过transformers库,仅需数行代码,即可构建起与这位智能伙伴沟通的桥梁。我们首先通过from_pretrained方法加载预训练的tokenizer和模型,随后通过generate方法,在tokenizer所提供的聊天模板辅助下,轻松启动对话流程。以下示例将展示如何与Qwen2-7B-Instruct进行一场生动的对话:

加载预训练模型

from transformers import AutoModelForCausalLM, AutoTokenizer# 设置设备参数
device = "cuda"  # 指定使用CUDA作为计算设备# 加载预训练模型,使用自动推断数据类型和自动选择设备
model = AutoModelForCausalLM.from_pretrained("/root/autodl-tmp/qwen/Qwen2-7B-Instruct",  # 模型路径torch_dtype="auto",  # 数据类型自动选择device_map="auto"  # 设备自动选择
)

加载分词器模型

# 加载与模型配套的分词器
tokenizer = AutoTokenizer.from_pretrained("/root/autodl-tmp/qwen/Qwen2-7B-Instruct")

定义提示message

# 准备提示文本,这里我们直接使用model.generate()方法生成文本
# 需要使用tokenizer.apply_chat_template()来格式化输入,如下所示
prompt = "请简单介绍一下大型语言模型。"  # 提示文本
messages = [{"role": "system", "content": "你是一个智能AI助手"},  # 系统角色消息{"role": "user", "content": prompt}  # 用户角色消息
]

模版格式化消息

# 使用分词器的apply_chat_template方法来格式化消息
text = tokenizer.apply_chat_template(messages,  # 要格式化的消息tokenize=False,  # 不进行分词add_generation_prompt=True  # 添加生成提示
)

根据输入ID获取生成ID

# 将格式化后的文本转换为模型输入,并转换为PyTorch张量,然后移动到指定的设备
model_inputs = tokenizer([text], return_tensors="pt").to(device)# 使用model.generate()方法直接生成文本
# 通过设置max_new_tokens参数控制输出的最大长度
generated_ids = model.generate(model_inputs.input_ids,  # 模型输入的input_idsmax_new_tokens=512  # 最大新生成的token数量
)# 从生成的ID中提取新生成的ID部分
generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

解码生成ID获取内容

# 使用分词器的batch_decode方法将生成的ID解码回文本,并跳过特殊token
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]

执行效果
在这里插入图片描述
查看响应内容

response

输出:

大型语言模型(Large Language Model)是人工智能领域的一种深度学习模型,主要用于生成与给定输入相关的自然语言文本。这类模型通过大量文本数据进行训练,能够学习到语言的复杂结构、语法、语义以及上下文关系等,从而在各种自然语言处理任务中表现出色。
基本原理
神经网络架构:大型语言模型通常基于循环神经网络(RNN)、长短期记忆网络(LSTM)或更先进的Transformer架构构建。这些模型能够处理序列数据,并在训练过程中学习到输入文本序列之间的依赖关系。
自回归性质:许多大型语言模型具有自回归性质,意味着它们生成的每个词都是基于之前生成的所有词的条件概率分布来预测的。
大规模训练:这些模型往往需要训练在海量的数据集上,例如包含数亿甚至数十亿字的文本数据。大规模的数据集有助于模型学习更广泛的语言模式和表达。
多用途性:大型语言模型因其强大的表示能力,可以应用于多种自然语言处理任务,包括但不限于文本生成、问答系统、代码生成、文本摘要、对话系统、翻译等。
应用场景

  • 文本生成:创建故事、文章、诗歌、代码等。
  • 问答系统:回答问题,提供信息检索服务。
  • 对话系统:构建聊天机器人,实现与用户的自然对话。
  • 自动文摘:从长篇文章中生成简洁的摘要。
  • 机器翻译:将文本从一种语言翻译成另一种语言。
  • 代码生成:根据指令生成特定功能的代码片段。

代表模型

  • GPT系列(由OpenAI开发):包括GPT-2、GPT-3等,以生成高质量文本而闻名。
  • 通义千问(阿里云开发):专注于中文领域的大型语言模型。
  • Mistral(由EleutherAI开发):一个开源的大型语言模型。
  • Qwen(由阿里云开发):另一个面向中文的大型语言模型。
    大型语言模型的发展极大地推动了自然语言处理技术的进步,为人类提供了更高效、更智能的交互方式和信息处理工具。

流式输出

当对话内容较长或需要实时更新时,流式传输模式就显得尤为重要。TextStreamer类允许我们将对话过程无缝切换至流式模式,从而实现更加流畅和动态的交互体验。以下示例将展示如何利用TextStreamer实现与Qwen2的流式对话:

# Reuse the code before `model.generate()` in the last code snippet
from transformers import TextStreamer
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
generated_ids = model.generate(model_inputs.input_ids,max_new_tokens=512,streamer=streamer,
)

代码测试如下:

from transformers import AutoModelForCausalLM, AutoTokenizer# 设置设备参数
device = "cuda"  # 指定使用CUDA作为计算设备# 加载预训练模型,使用自动推断数据类型和自动选择设备
model = AutoModelForCausalLM.from_pretrained("/root/autodl-tmp/qwen/Qwen2-7B-Instruct",  # 模型路径torch_dtype="auto",  # 数据类型自动选择device_map="auto"  # 设备自动选择
)# 加载与模型配套的分词器
tokenizer = AutoTokenizer.from_pretrained("/root/autodl-tmp/qwen/Qwen2-7B-Instruct")# 准备提示文本,这里我们直接使用model.generate()方法生成文本
# 需要使用tokenizer.apply_chat_template()来格式化输入,如下所示
prompt = "请简单介绍一下Qwen-2B。"  # 提示文本
messages = [{"role": "system", "content": "你是一个智能AI助手"},  # 系统角色消息{"role": "user", "content": prompt}  # 用户角色消息
]# 使用分词器的apply_chat_template方法来格式化消息
text = tokenizer.apply_chat_template(messages,  # 要格式化的消息tokenize=False,  # 不进行分词add_generation_prompt=True  # 添加生成提示
)# 将格式化后的文本转换为模型输入,并转换为PyTorch张量,然后移动到指定的设备
model_inputs = tokenizer([text], return_tensors="pt").to(device)# 使用model.generate()方法直接生成文本
# 通过设置max_new_tokens参数控制输出的最大长度
# generated_ids = model.generate(
#     model_inputs.input_ids,  # 模型输入的input_ids
#     max_new_tokens=512  # 最大新生成的token数量
# )
from transformers import TextStreamer
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
generated_ids = model.generate(model_inputs.input_ids,max_new_tokens=512,streamer=streamer,
)# 从生成的ID中提取新生成的ID部分
generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]# 使用分词器的batch_decode方法将生成的ID解码回文本,并跳过特殊token
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]

输出:

Qwen-2B并不是一个广泛认可或已知的实体,可能是特定情境下的称呼或者某个内部项目的代号。在公开信息中,并没有关于“Qwen-2B”的详细描述或定义。如果“Qwen-2B”与人工智能、技术产品、学术研究或某一具体领域相关,那么它可能指的是某个特定的模型、项目、版本或是实验。例如,在人工智能领域,“Qwen”可能是阿里云推出的一种大语言模型系列的名称,而“-2B”可能代表的是该系列中的某个特定版本或迭代。通常情况下,对于不常见或非主流的术语,了解其准确含义需要查阅相关组织、公司或研究机构的官方资料或发布的信息。如果你是在特定上下文中遇到“Qwen-2B”,建议查看该上下文的原始来源或联系相关的开发者或团队以获取更准确的信息。

在这里插入图片描述

结语

通过本文的介绍,相信您已经对如何使用transformers库与Qwen2-7B-Instruct进行对话有了更深入的了解。无论是基础的对话功能,还是高级的流式输出模式,transformers库都提供了强大而灵活的工具来满足不同场景下的需求。随着技术的不断进步,我们有理由相信,像Qwen2这样的智能对话模型将在未来扮演更加重要的角色,为我们的生活和工作带来更多便利。让我们拭目以待,AI技术将如何进一步改变我们的世界。

在这里插入图片描述
🎯🔖更多专栏系列文章:AI大模型提示工程完全指南AI大模型探索之路(零基础入门)AI大模型预训练微调进阶AI大模型开源精选实践AI大模型RAG应用探索实践🔥🔥🔥 其他专栏可以查看博客主页📑

😎 作者介绍:我是寻道AI小兵,资深程序老猿,从业10年+、互联网系统架构师,目前专注于AIGC的探索。
📖 技术交流:欢迎关注【小兵的AI视界】公众号或扫描下方👇二维码,加入技术交流群,开启编程探索之旅。
💘精心准备📚500本编程经典书籍、💎AI专业教程,以及高效AI工具。等你加入,与我们一同成长,共铸辉煌未来。
如果文章内容对您有所触动,别忘了点赞、⭐关注,收藏!加入我,让我们携手同行AI的探索之旅,一起开启智能时代的大门!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/366394.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

windows USB 驱动开发-URB结构

通用串行总线 (USB) 客户端驱动程序无法直接与其设备通信。 相反,客户端驱动程序会创建请求并将其提交到 USB 驱动程序堆栈进行处理。 在每个请求中,客户端驱动程序提供一个可变长度的数据结构,称为 USB 请求块 (URB) ,URB 结构描…

从理论到实践的指南:企业如何建立有效的EHS管理体系?

企业如何建立有效的EHS管理体系?对于任何企业,没有安全就谈不上稳定生产和经济效益,因此建立EHS管理体系是解决企业长期追求的建立安全管理长效机制的最有效手段。良好的体系运转,可以最大限度地减少事故发生。 这篇借着开头这个…

年轻人「入侵」厂货电商:泼天的富贵or甜蜜的烦恼?

【潮汐商业评论/原创】 “明天我们带个黑色塑料袋,假装是批发拿货的,看看能不能淘到好货。这个批发‘黑话’你也学一下,别到时候露馅。” Paula正兴冲冲地跟Grace计划去服装批发市场“消费”。 只不过,与以往普通进店客人身份不…

ArcGIS中将测绘数据投影坐标(平面坐标)转地理坐标(球面经纬度坐标)

目录 前言1.测绘数据预览1.1 确定带号1.2 为什么是对Y轴分带,而不是对X轴分带? 2 测绘数据转shp2.1 添加数据2.2 显示XY数据2.3 添加经纬度字段2.4 计算经纬度 3.shp数据重投影4.总结 前言 最近在刚好在做一个小功能,将测绘数据转为经纬度坐标…

人脸特征68点识别 C++

1、加载一张图片 main函数&#xff1a; cv::Mat img cv::imread("5.jpg");vector<Point2f> points_vec dectectFace68(img);2、人脸68特征识别函数 在这里vector<Point2f> dectectFace68(Mat src) {vector<Point2f> points_vec;int* pResults …

TIA博途WinCC通过VB脚本从 Excel中读取数据的具体方法介绍

TIA博途WinCC通过VB脚本从 Excel中读取数据的具体方法介绍 添加 一个PLC,设置PLC的IP地址,如下图所示, 添加全局DB块,新建几个变量,如下图所示, 在数据块中添加了 tag1 …… tag6 ,共 6 个浮点数类型的变量,用来接收通过 WinCC 从 Excel 文件中读取的数据。 添加 HMI…

量取无忧 —— PP容量瓶,实验室的透明选择

PP容量瓶&#xff0c;即聚丙烯&#xff08;Polypropylene&#xff0c;简称PP&#xff09;材质的容量瓶&#xff0c;是一种实验室常用的量器&#xff0c;用于准确量取一定体积的液体。以下是PP容量瓶的一些主要特性和应用&#xff1a; 主要特性&#xff1a; 1. 耐化学性&#x…

甄选版“论软件系统架构评估”,软考高级论文,系统架构设计师论文

论文真题 对于软件系统,尤其是大规模的复杂软件系统来说,软件的系统架构对于确保最终系统的质量具有十分重要的意义,不恰当的系统架构将给项目开发带来高昂的代价和难以避免的灾难。对一个系统架构进行评估,是为了:分析现有架构存在的潜在风险,检验设计中提出的质量需求,…

5G(NR) NTN 卫星组网架构

5G(NR) NTN 卫星组网架构 参考 3GPP TR 38.821 5G NTN 技术适用于高轨、低轨等多种星座部署场景&#xff0c;是实现星地网络融合发展的可行技术路线。5G NTN 网络分为用户段、空间段和地面段三部分。其中用户段由各种用户终端组成&#xff0c;包括手持、便携站、嵌入式终端、车…

JAVA-Redis数据结构—跳跃表(Skiplist)【包含Java实现详情代码】

本人详解 作者:王文峰,参加过 CSDN 2020年度博客之星,《Java王大师王天师》 公众号:JAVA开发王大师,专注于天道酬勤的 Java 开发问题中国国学、传统文化和代码爱好者的程序人生,期待你的关注和支持!本人外号:神秘小峯 山峯 转载说明:务必注明来源(注明:作者:王文峰…

PostgreSQL开发

在 PostgreSQL 中&#xff0c;你可以在表中创建数组类型的列 CREATE TABLE articles ( id SERIAL PRIMARY KEY, title VARCHAR(200), content TEXT, tags TEXT[], data JSONB ); 在上面的例子中&#xff0c;tags 列是一个文本数组&#xff0c;可以存储多个标签。 data 列是一…

探索IT世界的第一步:高考后的暑期学习指南

目录 前言1. IT领域概述1.1 IT领域的发展与现状1.2 IT领域的主要分支1.2.1 软件开发1.2.2 数据科学1.2.3 网络与安全1.2.4 系统与运维 2. 学习路线图2.1 基础知识的学习2.1.1 编程语言2.1.2 数据结构与算法 2.2 实战项目的实践2.2.1 个人项目2.2.2 团队项目 2.3 学习资源的利用…

前端技术栈学习:Vue2、Vue cli脚手架、ElementUI组件库、Axios

1 基本介绍 &#xff08;1&#xff09;Vue 是一个前端框架, 易于构建用户界面 &#xff08;2&#xff09;Vue 的核心库只关注视图层&#xff0c;不仅易于上手&#xff0c;还便于与第三方库或项目整合 &#xff08;3&#xff09;支持和其它类库结合使用 &#xff08;4&#…

2024最新源代码加密软件丨五款企业级软件评测

程序源代码作为企业的核心成果&#xff0c;一旦泄密将产生重大的损失&#xff0c;加密源代码至关重要。 可以防止他人未经授权使用、复制或修改源代码&#xff0c;保护开发者的劳动成果。 可以防止源代码被黑客或竞争对手获取和分析&#xff0c;减少漏洞被发现和利用的风险。…

网络基础-RIP协议

RIP&#xff08;Routing Information Protocol&#xff09;是一个基于距离矢量的动态路由协议&#xff0c;常用于小型到中型网络。RIP是较早的路由协议之一&#xff0c;具有简单易用的特点。以下是关于RIP协议的详细介绍&#xff1a; RIP的主要特点 ①使用跳数&#xff08;ho…

git基本使用(一):git的基本概念

Git 是一种分布式版本控制系统&#xff0c;最初由 Linus Torvalds 于 2005 年为 Linux 内核开发。它主要用于跟踪文件的更改&#xff0c;特别是在软件开发过程中&#xff0c;可以帮助团队成员协同工作。它在实际项目开发中&#xff0c;应用非常广泛&#xff0c;我们这一节来掌握…

C++ STL unique_ptr智能指针源码剖析

由于上一篇博客将shared_ptr,weak_ptr,enable_shared_form_this的源码实现整理了一遍,想着cpp智能指针还差个unique_ptr故写下此篇博客,以供学习 源码剖析 一,模板参数 首先,我们先看unique_ptr的模板参数,第一个参数_TP自是不用说表示对象类型,第二个模板参数定义了unique_p…

高电压技术-冲击高压发生器MATLAB仿真

微❤关注“电气仔推送”获得资料&#xff08;专享优惠&#xff09; 冲击电压发生器是产生冲击电压波的装置&#xff0c;用于检验电力设备耐受大气过电压和操作过电压的绝缘性能&#xff0c;冲击电压发生器能产生标准雷电冲击电压波形&#xff0c;雷电冲击电压截波,标准操作冲击…

优盘“盘符显示0字节”深度解析与全方位恢复指南

一、现象揭秘&#xff1a;优盘盘符下的“数字黑洞” 在数字化生活的洪流中&#xff0c;优盘作为便携存储的佼佼者&#xff0c;承载着无数人的重要数据与记忆。然而&#xff0c;当您满怀期待地将优盘插入电脑&#xff0c;却愕然发现其盘符下赫然标注着“0字节”&#xff0c;这份…

【Kali-linux for WSL】图形化界面安装

文章目录 前言图形化界面安装 前言 之前在WSL中安装了Kali 启动之后发现什么都没有&#xff01;&#xff01;&#xff01; 那我还怎么学习渗透技术&#xff1f;&#xff1f;&#xff1f; 看来&#xff0c;得改进下我的kali-linux for wsl&#xff0c;安装个图形化界面 图形化…