基于YOLOv10深度学习的CT扫描图像肾结石智能检测系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标检测

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】
3.【手势识别系统开发】4.【人脸面部活体检测系统开发】
5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】
7.【YOLOv8多目标识别与自动标注软件开发】8.【基于YOLOv8深度学习的行人跌倒检测系统】
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统】
11.【基于YOLOv8深度学习的安全帽目标检测系统】12.【基于YOLOv8深度学习的120种犬类检测与识别系统】
13.【基于YOLOv8深度学习的路面坑洞检测系统】14.【基于YOLOv8深度学习的火焰烟雾检测系统】
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统】16.【基于YOLOv8深度学习的舰船目标分类检测系统】
17.【基于YOLOv8深度学习的西红柿成熟度检测系统】18.【基于YOLOv8深度学习的血细胞检测与计数系统】
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统】20.【基于YOLOv8深度学习的水稻害虫检测与识别系统】
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统】22.【基于YOLOv8深度学习的路面标志线检测与识别系统】
23.【基于YOLOv8深度学习的智能小麦害虫检测识别系统】24.【基于YOLOv8深度学习的智能玉米害虫检测识别系统】
25.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统】26.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统】
27.【基于YOLOv8深度学习的人脸面部表情识别系统】28.【基于YOLOv8深度学习的苹果叶片病害智能诊断系统】
29.【基于YOLOv8深度学习的智能肺炎诊断系统】30.【基于YOLOv8深度学习的葡萄簇目标检测系统】
31.【基于YOLOv8深度学习的100种中草药智能识别系统】32.【基于YOLOv8深度学习的102种花卉智能识别系统】
33.【基于YOLOv8深度学习的100种蝴蝶智能识别系统】34.【基于YOLOv8深度学习的水稻叶片病害智能诊断系统】
35.【基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统】36.【基于YOLOv8深度学习的智能草莓病害检测与分割系统】
37.【基于YOLOv8深度学习的复杂场景下船舶目标检测系统】38.【基于YOLOv8深度学习的农作物幼苗与杂草检测系统】
39.【基于YOLOv8深度学习的智能道路裂缝检测与分析系统】40.【基于YOLOv8深度学习的葡萄病害智能诊断与防治系统】
41.【基于YOLOv8深度学习的遥感地理空间物体检测系统】42.【基于YOLOv8深度学习的无人机视角地面物体检测系统】
43.【基于YOLOv8深度学习的木薯病害智能诊断与防治系统】44.【基于YOLOv8深度学习的野外火焰烟雾检测系统】
45.【基于YOLOv8深度学习的脑肿瘤智能检测系统】46.【基于YOLOv8深度学习的玉米叶片病害智能诊断与防治系统】
47.【基于YOLOv8深度学习的橙子病害智能诊断与防治系统】48.【车辆检测追踪与流量计数系统】
49.【行人检测追踪与双向流量计数系统】50.【基于YOLOv8深度学习的反光衣检测与预警系统】
51.【危险区域人员闯入检测与报警系统】52.【高密度人脸智能检测与统计系统】

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】持续更新中~~
六、YOLO性能对比专栏【链接】,持续更新中~

基本功能演示

基于YOLOv10深度学习的CT扫描图像肾结石智能检测系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标检测

摘要:CT扫描图像的肾结石智能检测系统在医疗诊断方面提供了一种快速、准确的辅助工具,显著提高了医生识别和评估肾结石的效率。本文基于YOLOv10深度学习框架,通过1300张CT扫描的肾结石相关图片,训练了一个进行肾结石目标检测的模型,可以对CT扫描图像中的肾结石进行实时检测。并基于此模型开发了一款带UI界面的肾结石智能检测系统,更便于进行功能的展示。该系统是基于pythonPyQT5开发的,支持图片视频以及摄像头进行目标检测,并保存检测结果。本文提供了完整的Python代码和使用教程,给感兴趣的小伙伴参考学习,完整的代码资源文件获取方式见文末

文章目录

  • 基本功能演示
  • 前言
  • 一、软件核心功能介绍及效果演示
    • 软件主要功能
    • 界面参数设置说明
    • 检测结果说明
    • 主要功能说明
    • (1)图片检测说明
    • (2)视频检测说明
    • (3)摄像头检测说明
    • (4)保存图片与视频检测说明
  • 二、模型的训练、评估与推理
    • 1.YOLOv10简介
      • YOLOv10创新点
        • 双标签分配
        • 模型设计改进
    • 2. 数据集准备与训练
      • 模型训练
    • 3. 训练结果评估
    • 4. 检测结果识别
  • 【获取方式】
  • 结束语

点击跳转至文末《完整相关文件及源码》获取


前言

CT扫描图像的肾结石智能检测系统在医疗诊断方面提供了一种快速、准确的辅助工具,显著提高了医生识别和评估肾结石的效率。这项技术利用深度学习算法分析CT图像,可以在短时间内自动识别出肾结石,减少依赖医生主观判断的需求。这对于忙碌的医疗环境中,加快诊断过程、提供实时反馈,并辅助在肾结石治疗决策中起到至关重要的作用。

其主要应用场景包括:
临床诊断:在日常临床检查中应用,辅助医生快速确定肾结石的存在与位置。
紧急医疗:在急诊情况下快速筛查,协助判定是否为肾结石引起的腹痛。
远程医疗服务:在资源匮乏的区域,提供远程诊断服务,通过网络将CT图像传送至有系统支持的地方进行分析。
健康体检:在常规体检中作为标准流程之一,自动检测肾结石状况,提早预防和治疗。
医学研究:作为研究工具,分析肾结石发病的模式、频率和分布。
医疗数据分析:收集并分析大量医疗图像数据,用于改进肾结石的治疗方案和预防措施。

总结来说,CT扫描图像的肾结石智能检测系统利用先进的深度学习技术,为医生提供了一个强大的辅助工具,实现了对肾结石高效率和高准确率的检测。这不仅使临床诊断更加迅速和精确,还通过扩展至远程医疗等领域,极大地提高了医疗服务的可及性和质量。随着人工智能技术在医疗领域的持续进步,该系统的应用范围和诊断能力有望进一步扩展,为更多患者提供高质量的医疗服务。

博主通过搜集实际场景中的CT扫描的肾结石相关数据图片,根据YOLOv10的目标检测技术,基于python与Pyqt5开发了一款界面简洁的肾结石智能检测系统,可支持图片、视频以及摄像头检测,同时可以将图片或者视频检测结果进行保存

软件初始界面如下图所示:
在这里插入图片描述

检测结果界面如下:
在这里插入图片描述

一、软件核心功能介绍及效果演示

软件主要功能

1. 可用于实际场景中的CT扫描图像中的肾结石检测;
2. 支持图片、视频及摄像头进行检测,同时支持图片的批量检测
3. 界面可实时显示目标位置目标总数置信度用时等信息;
4. 支持图片或者视频检测结果保存

界面参数设置说明

在这里插入图片描述

置信度阈值:也就是目标检测时的conf参数,只有检测出的目标置信度大于该值,结果才会显示;
交并比阈值:也就是目标检测时的iou参数,只有目标检测框的交并比大于该值,结果才会显示;

检测结果说明

在这里插入图片描述

显示标签名称与置信度:表示是否在检测图片上标签名称与置信度,显示默认不勾选,如果勾选则会在检测图片上显示标签名称与置信度;
显示标签名称与置信度结果如下:
在这里插入图片描述

不显示标签名称与置信度结果如下:
在这里插入图片描述

总目标数:表示画面中检测出的目标数目;
目标选择:可选择单个目标进行位置信息、置信度查看。
目标位置:表示所选择目标的检测框,左上角与右下角的坐标位置。默认显示的是置信度最大的一个目标信息;

主要功能说明

功能视频演示见文章开头,以下是简要的操作描述。

(1)图片检测说明

点击打开图片按钮,选择需要检测的图片,或者点击打开文件夹按钮,选择需要批量检测图片所在的文件夹,操作演示如下:
点击目标下拉框后,可以选定指定目标的结果信息进行显示。
点击保存按钮,会对检测结果进行保存,存储路径为:save_data目录下。
注:1.右侧目标位置默认显示置信度最大一个目标位置,可用下拉框进行目标切换。所有检测结果均在左下方表格中显示。

(2)视频检测说明

点击视频按钮,打开选择需要检测的视频,就会自动显示检测结果,再次点击可以关闭视频。
点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。

(3)摄像头检测说明

点击打开摄像头按钮,可以打开摄像头,可以实时进行检测,再次点击,可关闭摄像头。

(4)保存图片与视频检测说明

点击保存按钮后,会将当前选择的图片【含批量图片】或者视频的检测结果进行保存。检测的图片与视频结果会存储在save_data目录下。

保存的检测结果文件如下:
在这里插入图片描述

二、模型的训练、评估与推理

1.YOLOv10简介

在这里插入图片描述
YOLOv10是YOLO最新一代版本的实时端到端目标检测算法。该算法在YOLO系列的基础上进行了优化和改进,旨在提高性能和效率之间的平衡。首先,作者提出了连续双分配方法,以实现NMS-free训练,从而降低了推理延迟并提高了模型的性能。其次,作者采用了全面的效率-准确性驱动的设计策略,对YOLO的各种组件进行了综合优化,大大减少了计算开销,并增强了模型的能力。实验结果表明,YOLOv10在各种模型规模下都取得了最先进的性能和效率表现。例如,YOLOv10-S比RT-DETR-R18快1.8倍,同时拥有更小的参数数量和FLOPs;与YOLOv9-C相比,YOLOv10-B的延迟减少了46%,参数减少了25%,但保持了相同的性能水平。

YOLOv10创新点

双标签分配

在这里插入图片描述

与一对一配对不同,一对多配对为每个真实标签分配一个预测标签,避免了后处理中的非极大抑制(NMS)。然而,它会导致弱监督,从而导致较低的准确度和收敛速度。幸运的是,这种缺陷可以通过一对多配对进行补偿。为了实现这一目标,我们在YOLO中引入了双标签分配来结合这两种策略的优点。具体来说,如上图所示,我们为 YOLO 添加了一个额外的一对一头部。它保留了一致的结构,并采用与原始的一对多分支相同的学习目标,但利用一对一匹配获得标签分配。在训练过程中,两个头与模型一起联合优化,允许骨干网络和脖子从一对多分支提供的丰富监督信号中受益。在推理过程中,我们丢弃一对多头,并使用一对一头进行预测。这使得 YOLO 能够端到端部署,而无需付出任何额外的推断成本。此外,在一对一匹配中,我们采用了顶部选择,实现了与匈牙利匹配相同的性能,同时减少了额外的训练时间。

模型设计改进

在这里插入图片描述

在模型设计方面,提出了以下几种改进点:
轻量级分类头: 通过对分类头进行轻量化设计,可以减少计算成本,而不会显著影响性能。
空间通道解耦降采样: 该方法通过分离空间和通道维度上的操作,提高了信息保留率,从而实现了更高的效率和竞争力。
排名引导块设计: 该方法根据各个阶段的冗余程度,采用不同的基本构建块,以实现更高效的模型设计。
大核深度卷积和部分自注意力模块: 这些模块可以在不增加太多计算开销的情况下提高模型的表现力。

2. 数据集准备与训练

通过网络上搜集关于CT扫描图像肾结石相关图片,并使用Labelimg标注工具对每张图片进行标注。数据集一共包含1300张图片,其中训练集包含1054张图片验证集包含123张图片测试集包含123张图片
部分图像及标注如下图所示:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

模型训练

图片数据的存放格式如下,在项目目录中新建datasets目录,同时将检测的图片分为训练集与验证集放入Data目录下。
在这里插入图片描述
同时我们需要新建一个data.yaml文件,用于存储训练数据的路径及模型需要进行检测的类别。YOLOv8在进行模型训练时,会读取该文件的信息,用于进行模型的训练与验证。data.yaml的具体内容如下:

train: D:\2MyCVProgram\5.YOLOv10Program\KidneyStoneDetection_v10\datasets\Data\train
val: D:\2MyCVProgram\5.YOLOv10Program\KidneyStoneDetection_v10\datasets\Data\valid
test: D:\2MyCVProgram\5.YOLOv10Program\KidneyStoneDetection_v10\datasets\Data\testnc: 1
names: ['KidneyStone']

注:train与val后面表示需要训练图片的路径,建议直接写自己文件的绝对路径。
数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:

#coding:utf-8
from ultralytics import YOLOv10
import matplotlib
matplotlib.use('TkAgg')#模型配置文件
model_yaml_path = "ultralytics/cfg/models/v10/yolov10n.yaml"
#数据集配置文件
data_yaml_path = 'datasets/Data/data.yaml'
#预训练模型
pre_model_name = 'yolov10n.pt'
if __name__ == '__main__':#加载预训练模型model = YOLOv10(model_yaml_path).load(pre_model_name)#训练模型results = model.train(data=data_yaml_path,epochs=150,batch=8,name='train_v10')

3. 训练结果评估

在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练时主要包含三个方面的损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss),在训练结束后,可以在runs/目录下找到训练过程及结果文件,如下所示:
在这里插入图片描述

各损失函数作用说明:
定位损失box_loss:预测框与标定框之间的误差(GIoU),越小定位得越准;
分类损失cls_loss:计算锚框与对应的标定分类是否正确,越小分类得越准;
动态特征损失(dfl_loss):DFLLoss是一种用于回归预测框与目标框之间距离的损失函数。在计算损失时,目标框需要缩放到特征图尺度,即除以相应的stride,并与预测的边界框计算Ciou Loss,同时与预测的anchors中心点到各边的距离计算回归DFLLoss。
本文训练结果如下:
在这里插入图片描述

我们通常用PR曲线来体现精确率和召回率的关系,本文训练结果的PR曲线如下。mAP表示Precision和Recall作为两轴作图后围成的面积,m表示平均,@后面的数表示判定iou为正负样本的阈值。mAP@.5:表示阈值大于0.5的平均mAP,可以看到本文模型目标检测的mAP@0.5值为0.748,结果还是不错的。
在这里插入图片描述

4. 检测结果识别

模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt文件,在runs/train/weights目录下。我们可以使用该文件进行后续的推理检测。
图片检测代码如下:

#coding:utf-8
from ultralytics import YOLOv10
import cv2# 所需加载的模型目录
path = 'models/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/1-3-46-670589-33-1-63705540012391921600001-4673924283181105107_png_jpg.rf.feb0267fe02c47cc492e2d8366c61616.jpg"# 加载预训练模型
model = YOLOv10(path, task='detect')# 检测图片
results = model(img_path)
print(results)
res = results[0].plot(labels=False,conf=False)
# res = cv2.resize(res,dsize=None,fx=0.5,fy=0.5,interpolation=cv2.INTER_LINEAR)
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)

执行上述代码后,会将执行的结果直接标注在图片上,结果如下:
在这里插入图片描述

以上便是关于此款CT扫描图像肾结石智能检测系统的原理与代码介绍。基于此模型,博主用pythonPyqt5开发了一个带界面的软件系统,即文中第二部分的演示内容,能够很好的支持图片、视频及摄像头进行检测,同时支持检测结果的保存

关于该系统涉及到的完整源码、UI界面代码、数据集、训练代码、测试图片视频等相关文件,均已打包上传,感兴趣的小伙伴可以通过下载链接自行获取。


【获取方式】

关注下方名片G-Z-H:【阿旭算法与机器学习】,并发送【源码】即可获取下载方式

本文涉及到的完整全部程序文件:包括python源码、数据集、训练好的结果文件、训练代码、UI源码、测试图片视频等(见下图),获取方式见文末:
在这里插入图片描述

注意:该代码基于Python3.9开发,运行界面的主程序为MainProgram.py,其他测试脚本说明见上图。为确保程序顺利运行,请按照程序运行说明文档txt配置软件运行所需环境。

关注下方名片GZH:【阿旭算法与机器学习】,并发送【源码】即可获取下载方式


结束语

以上便是博主开发的基于YOLOv10深度学习的CT扫描图像肾结石智能检测系统的全部内容,由于博主能力有限,难免有疏漏之处,希望小伙伴能批评指正。
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

觉得不错的小伙伴,感谢点赞、关注加收藏哦!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/367004.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【ajax实战02】数据管理网站—验证码登录

一:数据提交(提交手机验证码) 核心思路整理 利用form-serialize插件,收集对象形式的表单数据后,一并提交给服务器。后得到返回值,进一步操作 基地址: axios.defaults.baseURL http://geek.…

Keil5 ST-LINK setting闪退问题解决

1. 官网下载新版驱动文件 MDK uVision crashes when using ST-Link debugger 2. 解压替换 STLinkUSBDriver6.1.2.0Signed 我的库文件目录: D:\Tool\Keil5\ARM\STLink

开源模型应用落地-FastAPI-助力模型交互-WebSocket篇(六)

一、前言 使用 FastAPI 可以帮助我们更简单高效地部署 AI 交互业务。FastAPI 提供了快速构建 API 的能力,开发者可以轻松地定义模型需要的输入和输出格式,并编写好相应的业务逻辑。 FastAPI 的异步高性能架构,可以有效支持大量并发的预测请求,为用户提供流畅的交互体验。此外,F…

【JS】纯web端使用ffmpeg实现的视频编辑器-视频合并

纯前端实现的视频合并 接上篇ffmpeg文章 【JS】纯web端使用ffmpeg实现的视频编辑器 这次主要添加了一个函数,实现了视频合并的操作。 static mergeArgs(timelineList) {const cmd []console.log(时间轴数据,timelineList)console.log("文件1",this.readD…

MatLab三维图形绘制基础

三维图形绘制 三维曲线 plot3 螺旋图绘制 % %三维图像:螺旋图绘制 clear; clc; t [0:0.1:10*pi];% 向量 x sin(t) t.*cos(t);%t是向量,用点乘 y cos(t) - t.*sin(t); z t; plot3(x,y,z); grid on;plot3 绘制同型矩阵 %% % plot3绘制同型矩阵 t [0:0.1:10*…

游戏AI的创造思路-技术基础-tanh函数详解

又来搞事情,总想着把sigmoid函数替换成其他函数作为激活函数,或者找到更合适某一段训练的函数,所以今天来聊聊tanh函数(谁让咱当年差点去了数学系,结果还是在数学系转过去计算机的) 目录 3.9. tanh函数详解…

【Rust基础入门】Hello Cargo

文章目录 前言Cargo是什么?Cargo的作用查看cargo版本使用cargo创建项目Cargo.toml文件cargo build命令cargo runcargo check为发布构建 总结 前言 在Rust编程中,Cargo扮演着至关重要的角色。它是Rust的包管理器,负责处理许多任务&#xff0c…

uniapp入门

一、新建项目 进入到主界面,左上角点击新建——1.项目 输入项目名称,Vue版本选择3 二、创建页面 选中左侧文件目录里的pages文件夹,右键,选择新建页面 1输入名称 2选中“创建同名目录” 3选择模板&…

昇思25天学习打卡营第7天|网络构建

网络构建 神经网络模型由tensor操作和神经网络层构成。 MIndSporezhong,Cell是构建所有网络的基类,也是网络的基本单元。cell也由子cell构成。 定义模型类 # 继承nn.Cell类 class Network(nn.Cell):def __init__(self):super().__init__()self.flatte…

ElasticSearch 和 MySQL的区别

MySQLElasticSearch 数据库(database)索引(index)数据表(table) 类型(type) 记录文档(document,json格式) 一、ES基础命令 1. ES cat查询命令 2.…

分布式技术专题 | TCP在分布式网络中的通信机制与底层实现

深入解析分布式网络中的TCP通信协议实现 跨地域通信与资源共享网络节点与主机的定义网络技术通信机制TCP/IP协议模型TCP/IP分层机制TCP的Socket链接处理控制TCP的优势和特性自动差错控制正确性和有序性 TCP的Socket使用端口在应用程序间通信TCP的Socket使用端口套接字操作 跨地…

uniapp封装虚拟列表滚动组件

uniapp封装虚拟列表滚动组件 这里用到一个列表&#xff0c;然后数据可能有很多很多…&#xff0c;一次性全部渲染到dom上会卡顿&#xff0c;很废性能&#xff0c;于是用了这个虚拟列表就变丝滑很多很多。 组件mosoweInventedList 代码&#xff1a; <!-- 虚拟滚动列表组件&a…

GPT-4o首次引入!全新图像自动评估基准发布!

目录 01 什么是DreamBench&#xff1f; 02 与人类对齐的自动化评估 03 更全面的个性化数据集 04 实验结果 面对层出不穷的个性化图像生成技术&#xff0c;一个新问题摆在眼前&#xff1a;缺乏统一标准来衡量这些生成的图片是否符合人们的喜好。 对此&#xff0c;来自清华大…

mysql主键自增连续新增时报错主键重复-Duplicate entry “x” for key PRIMARY

mysql主键自增连续新增时报错主键重复 1、mysql数据库设置数据库主键自增的规律 id -- AUTO_INCREMENT2、可视化工具查看自增没问题 3、问题描述 新增第一个时操作成功&#xff0c;新增第二个时候操作失败报错&#xff1a; Duplicate entry “x” for key PRIMARY4、分析&a…

千益畅行,旅游卡,如何赚钱?

​ 赚钱这件事情&#xff0c;只有自己努力执行才会有结果。生活中没有幸运二字&#xff0c;每个光鲜亮丽的背后&#xff0c;都是不为人知的付出&#xff01; #旅游卡服务#

简过网:考公务员难度大吗,一般考几年才上岸!

先调查一下&#xff0c;大家考公务员都是几年才上岸的&#xff1f; 最近有网友私信小编&#xff0c;普通人考公要准备多久才能上岸&#xff0c;其实对于多久能上岸这个问题&#xff0c;并没有一个准确的数字&#xff0c;众所周知&#xff0c;公务员考试是有一定难度的&#xf…

Git入门 本地仓库 远端仓库 多分支

Git入门 Git入门本地git初始化git仓库初始化 创建远端仓库githubgitee 指定远端仓库推送至远端多分支将feature分支合并至dev分支 其他开发者 Git入门 本地git初始化 git仓库初始化 mkdir myrepo # 创建仓库文件夹 cd myrepo/ # 进入目录 git init # 初始化git仓库 (创建.g…

C - Popcorn(abs358)

题意&#xff1a;有n个摊子&#xff0c;m个爆米花&#xff0c;想花费最少去的店铺买到所有的口味的爆米花&#xff0c;找到每一列都为‘o’的最少行数。 分析&#xff1a;用dfs寻找最少路径 #include<bits/stdc.h> using namespace std; typedef long long ll; char x;…

CAN通信波形【示波器抓取】

在测试bms系统过程中&#xff0c;在上位机发现无法读取CAN通信&#xff0c;尝试使用示波器抓取CAN通信波形&#xff0c;&#xff0c;去确定CAN通信是否正常。 做一想要从车上测出can总线上的数据还不太容易。 于是我首先使用示波器&#xff08;我使用的示波器型号是TDS 220&am…

第十四届蓝桥杯省赛C++B组E题【接龙数列】题解(AC)

需求分析 题目要求最少删掉多少个数后&#xff0c;使得数列变为接龙数列。 相当于题目要求求出数组中的最长接龙子序列。 题目分析 对于一个数能不能放到接龙数列中&#xff0c;只关系到这个数的第一位和最后一位&#xff0c;所以我们可以先对数组进行预处理&#xff0c;将…