【YOLOv5进阶】——引入注意力机制-以SE为例

声明:笔记是做项目时根据B站博主视频学习时自己编写,请勿随意转载!

一、站在巨人的肩膀上

SE模块即Squeeze-and-Excitation 模块,这是一种常用于卷积神经网络中的注意力机制!!

借鉴代码的代码链接如下:

注意力机制-SEicon-default.png?t=N7T8https://github.com/ZhugeKongan/Attention-mechanism-implementation

需要model里面的SE_block.py文件

# -*- coding: UTF-8 -*-
"""
SE structure"""import torch.nn as nn  # 导入PyTorch的神经网络模块  
import torch.nn.functional as F  # 导入PyTorch的神经网络功能函数模块  class SE(nn.Module):  # 定义一个名为SE的类,该类继承自PyTorch的nn.Module,表示一个神经网络模块  def __init__(self, in_chnls, ratio):  # 初始化函数,in_chnls表示输入通道数,ratio表示压缩比率  super(SE, self).__init__()  # 调用父类nn.Module的初始化函数  # 使用AdaptiveAvgPool2d将输入的空间维度压缩为1x1,即全局平均池化  self.squeeze = nn.AdaptiveAvgPool2d((1, 1))  # 使用1x1卷积将通道数压缩为原来的1/ratio,实现特征压缩  self.compress = nn.Conv2d(in_chnls, in_chnls // ratio, 1, 1, 0)  # 使用1x1卷积将通道数扩展回原来的in_chnls,实现特征激励  self.excitation = nn.Conv2d(in_chnls // ratio, in_chnls, 1, 1, 0)  def forward(self, x):  # 定义前向传播函数  out = self.squeeze(x)  # 对输入x进行全局平均池化  out = self.compress(out)  # 对池化后的输出进行特征压缩  out = F.relu(out)  # 对压缩后的特征进行ReLU激活  out = self.excitation(out)  # 对激活后的特征进行特征激励  # 对激励后的特征应用sigmoid函数,然后与原始输入x进行逐元素相乘,实现特征重标定  return x*F.sigmoid(out)

代码后面有附注的注释(GPT解释的,很好用),理解即可。对于使用者来说,重要关注点还是它的输入通道、输出通道、需要传入的参数等!!这个函数整体传入in_chnls, ratio两个参数。


二、开始修改网络结构

与上节的C2f修改基本流程一致,但稍有不同

  • model/common.py加入新增的SE网络结构,直接复制粘贴如下,这里加在了上节的C2f之前:

上面说到这个函数整体传入in_chnls, ratio两个参数!!


  • model/yolo.py设定网络结构的传参细节

上期的C2f模块之所以可以参照原本存在的C3模块属性,是因为两者相似,但这里的SE模块就不可简单的在C3x后加SE,而是需要在下面加入一段elif代码:

         elif m is SE:c1 = ch[f]c2 = args[0]if c2 != no:  # if not outputc2 = make_divisible(c2 * gw, 8)args = [c1, args[1]]

当新引入的模块中存在输入输出维度时,需要使用gw调整输出维度!!


  • model/yolov5s.yaml设定现有模型结构配置文件

老样子,复制一份新的配置文件命名为yolov5s-se.yaml。首先需要在backbone的最后加上SE模块(相当于多了一层为第10层);其次考虑到backbone里多了一层,且在head里的输入层来源不止上一层(-1)一个,所以输入层来源大于等于第10层的都需要改为往后递推+1层。下图左边为原始的yaml配置文件,右侧为修改后的:

当yaml文件引入新的层后,需要修改模型结构的from参数(上期是将C3替换为C2f模块,所以不涉及这一点)!!


  • train.py训练时指定模型结构配置文件

这次将parse_model函数里的第二个参数cfg改为yolov5s-se.yaml即可,运行train.py开始训练!!

可见训练时第10层已经引入了SE注意力机制模块:

100次迭代后结果如下,结果保存在runs\train\exp12文件夹,文件夹里有很多指标曲线可对比分析:


 往期精彩

STM32专栏(9.9)icon-default.png?t=N7T8http://t.csdnimg.cn/A3BJ2

OpenCV-Python专栏(9.9)icon-default.png?t=N7T8http://t.csdnimg.cn/jFJWe

AI底层逻辑专栏(9.9)icon-default.png?t=N7T8http://t.csdnimg.cn/6BVhM

机器学习专栏(免费)icon-default.png?t=N7T8http://t.csdnimg.cn/ALlLlSimulink专栏(免费)icon-default.png?t=N7T8http://t.csdnimg.cn/csDO4电机控制专栏(免费)icon-default.png?t=N7T8http://t.csdnimg.cn/FNWM7

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/367368.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MLLM QLoRA微调实战:基于最新的袖珍Mini-InternVL模型

引言 大型语言模型(LLM)的世界正在不断发展,新的进步正在迅速出现。一个令人兴奋的领域是多模态LLM(MLLMs)的发展,这种模型既能够理解文本又能够理解图像,并与之进行交互。因此,这种…

Apache IoTDB 监控详解 | 分布式系统监控基础

IoTDB 分布式系统监控的基础“须知”! 我这个环境的系统性能一直无法提升,能否帮我找到系统的瓶颈在哪里? 系统优化后,虽然写入性能有所提升,但查询延迟却增加了,下一步我该如何排查和优化呢? 请…

DEPTHAI 2.27.0 发布!

小伙伴们大家好,我们发布了DepthAI 2.27.0版本,本次对DepthAI库有了一些小更新,以下是更新内容。 功能 设置DEPTHAI_ENABLE_FEEDBACK_CRASHDUMP时自动故障转储收集; 漏洞修补 修复深度超出ImageAlign节点时生成PointCloud的问…

文华财经macd-kdj-ZIGZAG顶底买卖点-大资金活动指标公式源码

VAR3:(CLOSE-MA(CLOSE,6))/MA(CLOSE,6)*100; VAR4:(CLOSE-MA(CLOSE,24))/MA(CLOSE,24)*100; VAR5:(CLOSE-MA(CLOSE,32))/MA(CLOSE,32)*100; VAR6:(VAR3VAR4VAR5)/3; VAR7:EMA(VAR6,5); 指标: EMA(EMA(VAR3,5),5)*3, COLORSTICK; VAR8:IF(VAR6<-20,10,0); VAR9:HHV(VA…

AI是在帮助开发者还是取代他们

目录 1.概述 1.1.AI助力开发者 1.2.AI对开发者的挑战 2.AI工具现状 2.1. GitHub Copilot 2.2. TabNine 2.3.小结 3.AI对开发者的影响 3.1.对开发者的影响 3.2.开发者需要掌握的新技能 3.3.在AI辅助的环境中保持竞争力的策略 4.AI开发的未来 5.总结 1.概述 生成式…

第十四章 Qt绘图

目录 一、Qt绘图基础 1、主要的类 2、paintEvent 事件 二、坐标体系 三、画笔 1、画笔的常用接口 2、画笔样式 3、画笔画线时的端点样式 4、画笔画线时,连接点的样式 5、实例 四、画刷 1、画刷的填充样式 2、实例 五、基本图形的绘制 1、画矩形 drawRect 2、画…

YOLO在目标检测与视频轨迹追踪中的应用

YOLO在目标检测与视频轨迹追踪中的应用 引言 在计算机视觉领域&#xff0c;目标检测与视频轨迹追踪是两个至关重要的研究方向。随着深度学习技术的飞速发展&#xff0c;尤其是卷积神经网络&#xff08;CNN&#xff09;的广泛应用&#xff0c;目标检测与视频轨迹追踪的性能得到…

GAMES104:04游戏引擎中的渲染系统1:游戏渲染基础-学习笔记

文章目录 概览&#xff1a;游戏引擎中的渲染系统四个课时概览 一&#xff0c;渲染管线流程二&#xff0c;了解GPUSIMD 和 SIMTGPU 架构CPU到GPU的数据传输GPU性能限制 三&#xff0c;可见性Renderable可渲染对象提高渲染效率Visibility Culling 可见性裁剪 四&#xff0c;纹理压…

分析逆向案例九——奥鹏教育教师登录密码加密

网址&#xff1a;aHR0cHM6Ly9wYXNzcG9ydC5vdXJ0ZWFjaGVyLmNvbS5jbi9BY2NvdW50L1BvcnRhbExvZ2luSW5kZXg 登陆接口分析 发现密码和用户名都进行了加密 跟栈进行分析&#xff0c;找加密位置 熟悉的ajax,打上断点&#xff0c;重复登录 加密函数为encrypt() 进入函数&#xff0c;发…

使用目标检测模型YOLO V10 OBB进行旋转目标的检测:训练自己的数据集(基于卫星和无人机的农业大棚数据集)

这个是在YOLO V10源码的基础上实现的。我只是在源码的基础上做了些许的改动。 YOLO V10源码&#xff1a;YOLO V10源码 YOLOv10是清华大学的研究人员在Ultralytics Python包的基础上&#xff0c;引入了一种新的实时目标检测方法&#xff0c;解决了YOLO 以前版本在后处理和模型架…

ubuntu 系统中 使用docker 制作 Windows 系统,从此告别 vmware虚拟机

我的系统是 ubuntu 24 前期准备工作&#xff1a; 安装dockerdocker pull 或者 手动制作镜像 docker build 的话 必须要 科学上网&#xff0c; 好像阿里镜像都下不下来。需要 知道 docker 和docker compose 命令的使用方式 我是给docker 挂了 http代理 如果你能pull下来镜像 …

React+TS前台项目实战(二十一)-- Search业务组件封装实现全局搜索

文章目录 前言一、Search组件封装1. 效果展示2. 功能分析3. 代码详细注释4. 使用方式 二、搜索结果展示组件封装1. 功能分析2. 代码详细注释 三、引用到文件&#xff0c;自行取用总结 前言 今天&#xff0c;我们来封装一个业务灵巧的组件&#xff0c;它集成了全局搜索和展示搜…

JCR一区级 | Matlab实现BO-Transformer-LSTM多变量回归预测

JCR一区级 | Matlab实现BO-Transformer-LSTM多变量回归预测 目录 JCR一区级 | Matlab实现BO-Transformer-LSTM多变量回归预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab实现BO-Transformer-LSTM多变量回归预测&#xff0c;贝叶斯优化Transformer结合LSTM长…

迅睿CMS 后端配置项没有正常加载,上传插件不能正常使用

首先&#xff0c;尝试迅睿CMS官方提供的【百度编辑器问题汇总】解决方案来解决你的问题。你可以访问这个链接&#xff1a;官方解决方案。 如果按照【百度编辑器问题汇总】解决方案操作后&#xff0c;依然遇到“后端配置项没有正常加载&#xff0c;上传插件不能正常使用”的问题…

算法体系-25 第二十五节:窗口内最大值或最小值的更新结构

一 滑动窗口设计知识点 滑动窗口是什么&#xff1f; 滑动窗口是一种想象出来的数据结构&#xff1a; 滑动窗口有左边界L和有边界R 在数组或者字符串或者一个序列上&#xff0c;记为S&#xff0c;窗口就是S[L..R]这一部分 L往右滑意味着一个样本出了窗口&#xff0c;R往右滑意味…

ubuntu 安装并启用 samba

环境&#xff1a;ubuntu server 24.04 步骤如下&#xff1a; sudo apt update sudo apt install samba修改配置文件&#xff1a; sudo vi /etc/samba/smb.conf新增内容&#xff1a; [username]path /home/[username]available yesvalid users [username]read only nobrow…

Python基础入门知识

目录 引言 简要介绍Python语言 为什么要学习Python Python的应用领域 Python安装和环境配置 Python的下载和安装(Windows, macOS, Linux) 配置Python环境变量 安装和使用IDE(如PyCharm, VS Code) Python基本语法 注释 变量和数据类型(数字,字符串,列表,元组,字典,…

【干货】SaaS企业使用PLG模式实现用户自增长与留存的三大战略

近年来越来越多toB厂商开始采用SaaS模式&#xff0c;消费者的体验需求和购买行为也逐渐转变。根据Forrester研究调查显示&#xff0c;B端购买者现在越来越倾向于进行产品体验和产品调研与评估&#xff0c;而非如传统的方式那样直接与销售人员接触。 因此&#xff0c;SaaS&…

帮找Java Bug,面试,项目,解决Java问题

本人是个Java老程序员&#xff0c;如果你有解决不了的问题&#xff0c;或者面试的时候需要人帮助&#xff0c;或者求职就业上任何问题都可以联系我&#xff0c;下面是我微信&#xff0c;欢迎联系我&#xff01;

【算法专题--栈】用栈实现队列 -- 高频面试题(图文详解,小白一看就懂!!)

目录 一、前言 二、题目描述 三、解题方法 ⭐双栈 模拟 队列 &#x1f95d;栈 和 队列 的特性 &#x1f34d;具体思路 &#x1f34d;案例图解 四、总结与提炼 五、共勉 一、前言 用栈实现队列 这道题&#xff0c;可以说是--栈专题--&#xff0c;最经典的一道题&…