概率论与数理统计_下_科学出版社

contents

    • 前言
    • 第5章 大数定律与中心极限定理
      • 独立同分布中心极限定理
    • 第6章 数理统计的基本概念
      • 6.1 总体与样本
      • 6.2 经验分布与频率直方图
      • 6.3 统计量
      • 6.4 正态总体抽样分布定理
        • 6.4.1 卡方分布、t 分布、F 分布
        • 6.4.2 正态总体抽样分布基本定理
    • 第7章 参数估计
      • 7.1 点估计
        • 7.1.1 矩估计法
        • 7.1.2 极大似然估计法
      • 7.2 估计量的评价标准
        • 7.2.1 无偏性
        • 7.2.2 有效性
        • 7.2.3 一致性
      • 7.3 区间估计
        • 7.3.1 基本概念
        • 7.3.2 区间估计常用方法之主元法
        • 7.3.3 正态总体的区间估计
    • 第8章 假设检验
      • 8.1 假设检验的基本概念
      • 8.2 单个正态总体均值的假设检验
      • 8.3 单个正态总体方差的假设检验

前言

更好的阅读体验:https://blog.dwj601.cn/GPA/4th-term/ProbAndStat/

笔记范围:五至八章。一至四章请跳转:https://blog.csdn.net/qq_73408594/article/details/140190525

教材情况:

课程名称选用教材版次作者出版社ISBN号
概率论与数理统计Ⅰ概率论与数理统计第一版刘国祥王晓谦 等主编科学出版社978-7-03-038317-4

学习资源:

  • 📺 视频资源:《概率论与数理统计》教学视频全集(宋浩)
  • 📖 教材答案:https://pan.baidu.com/s/1yeC0rxatHaLeNHQaW85Kpw?pwd=448w

第5章 大数定律与中心极限定理

{% note light %}

本章只需要知道一个独立同分布中心极限定理即可,至于棣莫弗-拉普拉斯中心极限定理其实就是前者的 { X i } i = 1 ∞ \{X_i\}_{i=1}^{\infty} {Xi}i=1 服从伯努利 n n n 重分布罢了。

{% endnote %}

独立同分布中心极限定理

定义: { X i } i = 1 ∞ \{X_i\}_{i=1}^{\infty} {Xi}i=1 独立同分布且非零方差,其中 E X i = μ , D X i = σ 2 EX_i=\mu,DX_i=\sigma^2 EXi=μ,DXi=σ2,则有:
∑ i = 1 n X i ∼ N ( ∑ i = 1 n ( E X i ) , ∑ i = 1 n ( D X i ) ) ∼ N ( n μ , n σ 2 ) \begin{aligned} \sum_{i=1}^n X_i &\sim N(\sum_{i=1}^n(EX_i),\sum_{i=1}^n(DX_i)) \\ &\sim N(n\mu,n\sigma^2) \end{aligned} i=1nXiN(i=1n(EXi),i=1n(DXi))N(nμ,nσ2)
解释:其实就是对于独立同分布的随机事件 X i X_i Xi,在事件数 n n n 足够大时,就近似为正态分布(术语叫做依分布)。这样就可以很方便利用正态分布的性质计算当前事件的概率。至于棣莫弗-拉普拉斯中心极限定理就是上述 μ = p , σ 2 = p ( 1 − p ) \mu=p,\sigma^2=p(1-p) μ=p,σ2=p(1p) 的特殊情况罢了

第6章 数理统计的基本概念

{% note light %}

开始统计学之旅。

{% endnote %}

6.1 总体与样本

类比 ML:数据集=总体,样本=样本。

我们只研究一种样本:简单随机样本 ( X 1 , X 2 , . . . , X n ) (X_1,X_2,...,X_n) (X1,X2,...,Xn)。符合下列两种特点:

  1. ( X 1 , X 2 , . . . , X n ) (X_1,X_2,...,X_n) (X1,X2,...,Xn) 相互独立
  2. ( X 1 , X 2 , . . . , X n ) (X_1,X_2,...,X_n) (X1,X2,...,Xn) 同分布

同样的,我们研究总体 X X X 的分布与概率密度,一般概率密度会直接给,需要我们在此基础之上研究所有样本的联合密度:

  • 分布:由于样本相互独立,故:
    F ( x 1 , x 2 , . . . , x n ) = F ( x 1 ) F ( x 2 ) ⋯ F ( x n ) F(x_1,x_2,...,x_n)=F(x_1)F(x_2) \cdots F(x_n) F(x1,x2,...,xn)=F(x1)F(x2)F(xn)

  • 联合密度:同样由于样本相互独立,故:
    p ( x 1 , x 2 , . . . , x n ) = p ( x 1 ) p ( x 2 ) ⋯ p ( x n ) p(x_1,x_2,...,x_n)=p(x_1)p(x_2) \cdots p(x_n) p(x1,x2,...,xn)=p(x1)p(x2)p(xn)

6.2 经验分布与频率直方图

经验分布函数是利用样本得到的。也是给区间然后统计样本频度进而计算频率,只不过区间长度不是固定的。

频率直方图就是选定固定的区间长度,然后统计频度进而计算频率作图。

6.3 统计量

统计量定义:关于样本不含未知数的表达式。

常见统计量:假设 ( X 1 , X 2 , . . . , X n ) (X_1,X_2,...,X_n) (X1,X2,...,Xn) 为来自总体 X X X 的简单随机样本

一、样本均值和样本方差

  • 样本均值: X ‾ = 1 n ∑ i = 1 n X i \displaystyle \overline{X} = \frac{1}{n} \sum_{i=1}^n X_i X=n1i=1nXi

  • 样本方差: S 0 2 = 1 n ∑ i = 1 n ( X i − X ‾ ) 2 = 1 n ∑ i = 1 n X i 2 − X ‾ 2 \displaystyle S_0^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2 = \frac{1}{n}\sum_{i=1}^n X_i^2 - \overline{X}^2 S02=n1i=1n(XiX)2=n1i=1nXi2X2

  • 样本标准差: S 0 = S 0 2 \displaystyle S_0 = \sqrt{S_0^2} S0=S02

  • 修正样本方差: S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ‾ ) 2 \displaystyle S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2 S2=n11i=1n(XiX)2

  • 修正样本标准差: S = S 2 \displaystyle S = \sqrt{S^2} S=S2
    {% fold light @推导 %}

    设总体 X X X 的数学期望和方差分别为 μ \mu μ σ 2 \sigma^2 σ2 ( X 1 , X 2 , . . . , X n ) (X_1,X_2,...,X_n) (X1,X2,...,Xn) 是简单随机样本,则:

    样本均值的数学期望与总体的数学期望相等

    即:样本均值的数学期望 = = = 总体的数学期望

    样本方差的数学期望与总体的数学期望 不相等

    即:样本方差的数学期望 ≠ \ne = 总体的数学期望

    修正样本方差推导

    上图即:修正样本方差推导

    {% endfold %}

  • 样本 k k k 阶原点矩: A k = 1 n ∑ i = 1 n X i k , k = 1 , 2 , ⋯ \displaystyle A_k = \frac{1}{n} \sum_{i=1}^n X_i^k,\quad k=1,2,\cdots Ak=n1i=1nXik,k=1,2,

  • 样本 k k k 阶中心矩: B k = 1 n ∑ i = 1 n ( X i − X ‾ ) k , k = 2 , 3 , ⋯ \displaystyle B_k = \frac{1}{n} \sum_{i=1}^n (X_i-\overline{X})^k,\quad k=2,3,\cdots Bk=n1i=1n(XiX)k,k=2,3,

二、次序统计量

  • 序列最小值
  • 序列最大值
  • 极差 = 序列最大值 - 序列最小值

6.4 正态总体抽样分布定理

{% note light %}

时刻牢记一句话:构造性定义!

{% endnote %}

6.4.1 卡方分布、t 分布、F 分布

分位数

  • 我们定义实数 λ α \lambda_\alpha λα 为随机变量 X X X 的上侧 α \alpha α 分位数(点)当且仅当 P ( X > λ α ) = α P(X > \lambda_\alpha) = \alpha P(X>λα)=α
  • 我们定义实数 λ 1 − β \lambda_{1-\beta} λ1β 为随机变量 X X X 的下侧 β \beta β 分位数(点)当且仅当 P ( X < λ 1 − β ) = β P(X < \lambda_{1-\beta})=\beta P(X<λ1β)=β

χ 2 \chi^2 χ2 分布

{% fold light @密度函数图像 %}

密度函数图像

{% endfold %}

定义:

  • 对于 n n n 个独立同分布的标准正态随机变量 X 1 , X 2 , ⋯ , X n X_1,X_2,\cdots ,X_n X1,X2,,Xn,若 Y = X 1 2 + X 2 2 + ⋯ + X n 2 Y = X_1^2 + X_2^2 + \cdots + X_n^2 Y=X12+X22++Xn2
  • Y Y Y 服从自由度为 n n n χ 2 \chi^2 χ2 分布,记作: Y ∼ χ 2 ( n ) Y \sim \chi^2(n) Yχ2(n)

性质:

  • 可加性:若 Y 1 ∼ χ 2 ( n 1 ) , Y 2 ∼ χ 2 ( n 2 ) Y_1 \sim \chi^2(n_1), Y_2 \sim \chi^2(n_2) Y1χ2(n1),Y2χ2(n2) Y 1 , Y 2 Y_1,Y_2 Y1,Y2 相互独立,则 Y 1 + Y 2 ∼ χ 2 ( n 1 + n 2 ) Y_1+Y_2 \sim \chi^2(n_1+n_2) Y1+Y2χ2(n1+n2)

  • 统计性:对于 Y ∼ χ 2 ( n ) Y \sim \chi^2(n) Yχ2(n),有 E Y = n , D Y = 2 n EY = n, DY = 2n EY=n,DY=2n

    {% fold light @推导 %}
    EY 的推导利用: E X 2 = D X − ( E X ) 2 EX^2 = DX - (EX)^2 EX2=DX(EX)2

    EY 的推导

    DY 的推导利用:方差计算公式、随机变量函数的数学期望进行计算

    DY 的推导

    {% endfold %}

t t t 分布

{% fold light @密度函数图像 %}

密度函数图像

{% endfold %}

定义:

  • 若随机变量 X ∼ N ( 0 , 1 ) , Y ∼ χ 2 ( n ) X \sim N(0, 1),Y \sim \chi^2 (n) XN(0,1),Yχ2(n) X , Y X,Y X,Y 相互独立
  • 则称随机变量 T = X Y / n T = \displaystyle \frac{X}{\sqrt{Y/n}} T=Y/n X 为服从自由度为 n n n t t t 分布,记作 T ∼ t ( n ) T \sim t(n) Tt(n)

性质:

  • 密度函数是偶函数,具备对称性

F F F 分布

{% fold light @密度函数图像 %}

密度函数图像

{% endfold %}

定义:

  • 若随机变量 X ∼ χ 2 ( m ) , Y ∼ χ 2 ( n ) X \sim \chi^2(m), Y \sim \chi^2(n) Xχ2(m),Yχ2(n) 且相互独立
  • 则称随机变量 G = X / m Y / n G=\displaystyle \frac{X/m}{Y/n} G=Y/nX/m 服从自由度为 ( m , n ) (m,n) (m,n) F F F 分布,记作 G ∼ F ( m , n ) G \sim F(m, n) GF(m,n)

性质:

  • 倒数自由度转换: 1 G ∼ F ( n , m ) \displaystyle \frac{1}{G} \sim F(n, m) G1F(n,m)
  • 三变性质: F 1 − α ( m , n ) = [ F α ( n , m ) ] − 1 \displaystyle F_{1-\alpha}(m, n) = \left [F_\alpha (n, m)\right]^{-1} F1α(m,n)=[Fα(n,m)]1
6.4.2 正态总体抽样分布基本定理

X 1 , X 2 , ⋯ , X n X_1,X_2,\cdots ,X_n X1,X2,,Xn 是来自正态总体 N ( μ , σ 2 ) N(\mu, \sigma^2) N(μ,σ2) 的简单随机样本, X ‾ , S 2 \overline{X},S^2 X,S2 分别是样本均值和修正样本方差。则有:

定理:

  • X ‾ ∼ N ( μ , σ 2 n ) \displaystyle \overline{X} \sim N(\mu, \frac{\sigma^2}{n}) XN(μ,nσ2)
  • ( n − 1 ) S 2 σ 2 ∼ χ 2 ( n − 1 ) \displaystyle \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1) σ2(n1)S2χ2(n1)
  • X ‾ \overline{X} X S 2 S^2 S2 相互独立

推论:

  • n ( X ‾ − μ ) S ∼ t ( n − 1 ) \displaystyle \frac{\sqrt{n}(\overline{X} - \mu)}{S} \sim t(n-1) Sn (Xμ)t(n1)

第7章 参数估计

{% note light %}

有些时候我们知道数据的分布类型,但是不清楚表达式中的某些参数,这就需要我们利用「已有的样本」对分布表达式中的参数进行估计。本章我们将从点估计、估计评价、区间估计三部分出发进行介绍。

{% endnote %}

7.1 点估计

{% note light %}

所谓点估计策略,就是直接给出参数的一个估计值。本目我们介绍点估计策略中的两个方法:矩估计法、极大似然估计法。

{% endnote %}

7.1.1 矩估计法

其实就一句话:我们用样本的原点矩 A k A_k Ak 来代替总体 E ( X k ) E(X^k) E(Xk) k k k 个未知参数就需要用到 k k k 个原点矩:
E ( X k ) = A k = 1 n ∑ i = 1 n X i k E(X^k) = A_k = \frac{1}{n}\sum_{i=1}^nX_i^k E(Xk)=Ak=n1i=1nXik

7.1.2 极大似然估计法

基本原理是:在当前样本数据的局面下,我们希望找到合适的参数使得当前的样本分布情况发生的概率最大。由于各样本相互独立,因此我们可以用连乘的概率公式来计算当前局面的概率值:
L ( θ ; x 1 , x 2 , ⋯ , x n ) L(\theta;x_1,x_2,\cdots,x_n) L(θ;x1,x2,,xn)
上述 L ( θ ; x 1 , x 2 , ⋯ , x n ) L(\theta;x_1,x_2,\cdots,x_n) L(θ;x1,x2,,xn) 即似然函数,目标就是选择适当的参数 θ \theta θ 来最大化似然函数。无论是离散性还是连续型,都可以采用下面的方式来计算极大似然估计:

  1. 写出似然函数 L ( θ ) L(\theta) L(θ)
  2. 将上述似然函数取对数
  3. 求对数似然函数关于所有未知参数的偏导并计算极值点
  4. 解出参数关于样本统计量的表达式

离散型随机变量的似然函数表达式
L ( θ ) = ∏ i = 1 n p ( x i ; θ ) = ∏ i = 1 n P ( X i = x i ) L(\theta) = \prod_{i=1}^n p(x_i;\theta) = \prod_{i=1}^n P(X_i = x_i) L(θ)=i=1np(xi;θ)=i=1nP(Xi=xi)
连续型随机变量的似然函数表达式
L ( θ ) = ∏ i = 1 n p ( x i ; θ ) L(\theta) = \prod_{i=1}^n p(x_i;\theta) L(θ)=i=1np(xi;θ)
可以看出极大似然估计本质上就是一个多元函数求极值的问题。特别地,当我们没法得到参数关于样本统计量的表达式 L ( θ ) L(\theta) L(θ) 时,可以直接从定义域、原函数恒增或恒减等角度出发求解这个多元函数的极值。

7.2 估计量的评价标准

{% note light %}

如何衡量不同的点估计方法好坏?我们引入三种点估计量的评价指标:无偏性、有效性、一致性。其中一致性一笔带过,不做详细讨论。补充一点,参数的估计量 θ \theta θ 是关于样本的统计量,因此可以对其进行求期望、方差等操作。

{% endnote %}

7.2.1 无偏性

顾名思义,就是希望估计出来的参数量尽可能不偏离真实值。我们定义满足下式的估计量 θ ^ \hat \theta θ^ 为真实参数的无偏估计:
E θ ^ = θ E\hat \theta =\theta Eθ^=θ

7.2.2 有效性

有效性是基于比较的定义方法。对于两个无偏估计 θ ^ 1 , θ ^ 2 \hat\theta_1,\hat\theta_2 θ^1,θ^2,谁的方差越小谁就越有效。即若 D ( θ ^ 1 ) , D ( θ ^ 2 ) D(\hat\theta_1),D(\hat\theta_2) D(θ^1),D(θ^2) 满足下式,则称 θ ^ 1 \hat\theta_1 θ^1 更有效
D ( θ ^ 1 ) < D ( θ ^ 2 ) D(\hat\theta_1) < D(\hat\theta_2) D(θ^1)<D(θ^2)

7.2.3 一致性

即当样本容量 n 趋近于无穷时,参数的估计值也能趋近于真实值,则称该估计量 θ ^ \hat\theta θ^ θ \theta θ 的一致估计量

7.3 区间估计

{% note light %}

由于点估计只能进行比较,无法对单一估计进行性能度量。因此引入「主元法」的概念与「区间估计」策略

{% endnote %}

7.3.1 基本概念

可靠程度:参数估计区间越长,可靠程度越高

精确程度:参数估计区间越短,可靠程度越高

7.3.2 区间估计常用方法之主元法

主元法的核心逻辑就一个:在已知数据总体分布的情况下,构造一个关于样本 X X X 和待估参数 θ \theta θ 的函数 Z ( X , θ ) Z(X,\theta) Z(X,θ),然后利用置信度和总体分布函数,通过查表得到 Z ( X , θ ) Z(X,\theta) Z(X,θ) 的取值范围,最后通过移项变形得到待估参数的区间,也就是估计区间。

7.3.3 正态总体的区间估计

我们只需要掌握「一个总体服从正态分布」的情况。这种情况下的区间估计分为三种,其中估计均值 μ \mu μ 有 2 种,估计方差 σ 2 \sigma^2 σ2 有 1 种。估计的逻辑我总结为了以下三步:

  1. 构造主元 Z ( X , θ ) Z(X,\theta) Z(X,θ)
  2. 利用置信度 1 − α 1-\alpha 1α 计算主元 Z Z Z 的取值范围
  3. 对主元 Z Z Z 的取值范围移项得到参数 θ \theta θ 的取值范围

为了提升区间估计的可信度,我们希望上述第 2 步计算出来的关于主元的取值范围尽可能准确。我们不加证明的给出以下结论:取主元的取值范围为 主元服从的分布的上下 α 2 \frac{\alpha}{2} 2α 分位数之间

(一) 求 μ \mu μ 的置信区间, σ 2 \sigma^2 σ2 已知

构造主元 Z ( X , θ ) Z(X,\theta) Z(X,θ)
Z = X ‾ − μ σ / n ∼ N ( 0 , 1 ) Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1) Z=σ/n XμN(0,1)
利用置信度 1 − α 1-\alpha 1α 计算主元 Z Z Z 的取值范围:
P ( ∣ Z ∣ ≤ λ ) = 1 − α ↓ Z ∈ [ − λ , λ ] = [ − u α 2 , u α 2 ] \begin{aligned} P(|Z| \le \lambda) &= 1-\alpha \\ &\downarrow\\ Z \in [-\lambda,\lambda] &= [-u_{\frac{\alpha}{2}},u_\frac{\alpha}{2}] \end{aligned} P(Zλ)Z[λ,λ]=1α=[u2α,u2α]
对主元 Z Z Z 的取值范围移项得到参数 θ \theta θ 的取值范围:
X ‾ − σ n u α 2 ≤ μ ≤ X ‾ + σ n u α 2 \overline{X} - \frac{\sigma}{\sqrt{n}} u_\frac{\alpha}{2} \le \mu \le \overline{X} + \frac{\sigma}{\sqrt{n}} u_\frac{\alpha}{2} Xn σu2αμX+n σu2α
(二) 求 μ \mu μ 的置信区间, σ 2 \sigma^2 σ2 未知

构造主元 Z ( X , θ ) Z(X,\theta) Z(X,θ)
Z = X ‾ − μ S / n ∼ t ( n − 1 ) Z = \frac{\overline{X} - \mu}{S / \sqrt{n}} \sim t(n-1) Z=S/n Xμt(n1)
利用置信度 1 − α 1-\alpha 1α 计算主元 Z Z Z 的取值范围:
P ( ∣ Z ∣ ≤ λ ) = 1 − α ↓ Z ∈ [ − λ , λ ] = [ − t α 2 ( n − 1 ) , t α 2 ( n − 1 ) ] \begin{aligned} P(|Z| \le \lambda) &= 1-\alpha \\ &\downarrow\\ Z \in [-\lambda,\lambda] &= [-t_{\frac{\alpha}{2}}(n-1),t_\frac{\alpha}{2}(n-1)] \end{aligned} P(Zλ)Z[λ,λ]=1α=[t2α(n1),t2α(n1)]
对主元 Z Z Z 的取值范围移项得到参数 θ \theta θ 的取值范围:
X ‾ − S n t α 2 ( n − 1 ) ≤ μ ≤ X ‾ + S n t α 2 ( n − 1 ) \overline{X} - \frac{S}{\sqrt{n}} t_\frac{\alpha}{2}(n-1) \le \mu \le \overline{X} + \frac{S}{\sqrt{n}} t_\frac{\alpha}{2}(n-1) Xn St2α(n1)μX+n St2α(n1)
(三) 求 σ 2 \sigma^2 σ2 的置信区间,构造的主元与总体均值无关,因此不需要考虑 μ \mu μ 的情况:

构造主元 Z ( X , θ ) Z(X,\theta) Z(X,θ)
Z = ( n − 1 ) S 2 σ 2 ∼ χ 2 ( n − 1 ) Z = \frac{(n-1)S^2}{\sigma^2}\sim \chi^2(n-1) Z=σ2(n1)S2χ2(n1)
利用置信度 1 − α 1-\alpha 1α 计算主元 Z Z Z 的取值范围:
P ( λ 1 ≤ Z ≤ λ 2 ) = 1 − α ↓ Z ∈ [ λ 1 , λ 2 ] = [ χ 1 − α 2 2 ( n − 1 ) , χ α 2 2 ( n − 1 ) ] \begin{aligned} P(\lambda_1 \le Z \le \lambda_2) &= 1-\alpha \\ &\downarrow\\ Z \in [\lambda_1,\lambda_2] &= [\chi^2_{1-\frac{\alpha}{2}}(n-1),\chi^2_\frac{\alpha}{2}(n-1)] \end{aligned} P(λ1Zλ2)Z[λ1,λ2]=1α=[χ12α2(n1),χ2α2(n1)]
对主元 Z Z Z 的取值范围移项得到参数 θ \theta θ 的取值范围:
( n − 1 ) S 2 χ α 2 2 ( n − 1 ) ≤ σ 2 ≤ ( n − 1 ) S 2 χ 1 − α 2 2 ( n − 1 ) \frac{(n-1)S^2}{\chi^2_\frac{\alpha}{2}(n-1)} \le \sigma^2 \le \frac{(n-1)S^2}{\chi^2_{1-\frac{\alpha}{2}}(n-1)} χ2α2(n1)(n1)S2σ2χ12α2(n1)(n1)S2

第8章 假设检验

{% note light %}

第 7 章的参数估计是在总体分布已知且未知分布表达式中某些参数的情况下,基于「抽取的少量样本」进行的参数估计。

现在的局面同样,我们已知总体分布和不完整的分布表达式参数。现在需要我们利用抽取的少量样本判断样本所在向量空间是否符合某种性质。本章的「假设检验」策略就是为了解决上述情况而诞生的。我们主要讨论单个正态总体的情况并针对均值和方差两个参数进行假设和检验:

  • 假设均值满足某种趋势,利用已知数据判断假设是否成立
  • 假设方差满足某种趋势,利用已知数据判断假设是否成立

{% endnote %}

8.1 假设检验的基本概念

基本思想:首先做出假设并构造一个关于样本观察值和已知参数的检验统计量,接着计算假设发生的情况下小概率事件发生时该检验统计量的取值范围(拒绝域),最终代入已知样本数据判断计算结果是否在拒绝域内。如果在,则说明在当前假设的情况下小概率事件发生了,对应的假设为假;反之说明假设为真。

为了量化「小概率事件发生」这个指标,我们引入显著性水平 α \alpha α 这一概念。该参数为一个很小的正数,定义为「小概率事件发生」的概率上界。

基于数据的实验导致我们无法避免错误,因此我们定义以下两类错误:

  • 第一类错误:弃真错误。即假设正确,但由于数据采样不合理导致拒绝了真实的假设
  • 第二类错误:存伪错误。即假设错误,同样因为数据的不合理导致接受了错误的假设

8.2 单个正态总体均值的假设检验

X 1 , X 2 , ⋯ , X n X_1,X_2,\cdots ,X_n X1,X2,,Xn 是来自正态总体 N ( μ , σ 2 ) N(\mu, \sigma^2) N(μ,σ2) 的简单随机样本。后续进行假设判定计算统计量 Z Z Z 的真实值时,若总体均值 μ \mu μ 已知就直接代入,若未知题目也一定会给一个阈值,代这个阈值即可。

当总体方差 σ 2 \sigma^2 σ2 已知时,我们构造样本统计量 Z Z Z 为正态分布:
Z = X ‾ − μ σ / n ∼ N ( 0 , 1 ) Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1) Z=σ/n XμN(0,1)

  • 检验是否则求解双侧 α \alpha α 分位数
  • 检验单边则求解单侧 α \alpha α 分位数

当总体方差 σ 2 \sigma^2 σ2 未知时,我们构造样本统计量 Z Z Z t t t 分布:
Z = X ‾ − μ S / n ∼ t ( n − 1 ) Z = \frac{\overline{X} - \mu}{S / \sqrt{n}} \sim t(n-1) Z=S/n Xμt(n1)
{% note warning %}

注:之所以这样构造是因为当总体 σ \sigma σ 未知时,上一个方法构造的主元已经不再是统计量,我们需要找到能够代替未知参数 σ \sigma σ 的变量,这里就采用其无偏估计「修正样本方差 S 2 S^2 S2」来代替 σ 2 \sigma^2 σ2。也是说直接拿样本的修正方差来代替总体的方差了。

{% endnote %}

  • 检验是否则求解双侧 α \alpha α 分位数
  • 检验单边则求解单侧 α \alpha α 分位数

8.3 单个正态总体方差的假设检验

X 1 , X 2 , ⋯ , X n X_1,X_2,\cdots ,X_n X1,X2,,Xn 是来自正态总体 N ( μ , σ 2 ) N(\mu, \sigma^2) N(μ,σ2) 的简单随机样本。后续进行假设判定计算统计量 Z Z Z 的真实值时,若总体方差 σ 2 \sigma^2 σ2 已知就直接代入,若未知题目也一定会给一个阈值,代这个阈值即可。

我们直接构造样本统计量 Z Z Z χ 2 \chi^2 χ2 分布:
Z = ( n − 1 ) S 2 σ 2 ∼ χ 2 ( n − 1 ) Z = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1) Z=σ2(n1)S2χ2(n1)

  • 检验是否则求解双侧 α \alpha α 分位数
  • 检验单边则求解单侧 α \alpha α 分位数

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/368497.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++中的类型转换操作符:static_cast reinterpret_cast const_cast dynamic_cast

目录​​​​​​​ C语言中的类型转换 C中的类型转换 C中的类型转换操作符 static_cast reinterpret_cast const_cast volatile关键字 赋值兼容 dynamic_cast C语言中的类型转换 基本概念&#xff1a;赋值运算符左右两侧类型不同&#xff0c;或形参与实参类型不匹配…

抖音微短剧小程序源码搭建:实现巨量广告数据高效回传

在数字化营销日益盛行的今天&#xff0c;抖音微短剧小程序已成为品牌与观众互动的新渠道。这些短小精悍的剧目不仅能迅速抓住用户的注意力&#xff0c;还能有效提升品牌的知名度和用户黏性。然而&#xff0c;想要充分利用这一营销工具&#xff0c;关键在于如何高效地追踪广告数…

【PyQt】20-QTimer(动态显示时间、定时关闭)

QTimer 前言一、QTimer介绍二、动态时间展示2.1 代码2.2 运行结果 三、定时关闭3.1 介绍他的两种用法1、使用函数或Lambda表达式2、带有定时器类型&#xff08;高级&#xff09; 3.2 代码3.3 运行结果 总结 前言 好久没学习了。 一、QTimer介绍 pyqt里面的多线程可以有两种实…

【python数据处理】— “2020-01-01 05:20:15“日期格式数据

文章目录 一、数据说明及目标二、实现方式1.提取date2.提取hour3.提取weekday4.提取month 一、数据说明及目标 数据说明 数据表有一列名为"datetime"表示时间数据&#xff0c;该列的数据格式是"2020-01-01 05:20:15"。 import pandas as pd datapd.read_e…

基于SpringBoot的超市进销存系统

你好呀&#xff0c;我是计算机学姐码农小野&#xff01;如果有相关需求&#xff0c;可以私信联系我。 开发语言&#xff1a;Java 数据库&#xff1a;MySQL 技术&#xff1a;SpringBoot框架 工具&#xff1a;MyEclipse、Tomcat 系统展示 首页 首页界面图 个人中心 个人中心…

地理信息科学:生态保护的智慧经纬

在地球这颗蓝色星球上&#xff0c;每一片森林的呼吸、每一条河流的流淌&#xff0c;都是生命交响曲中不可或缺的音符。而地理信息科学&#xff08;GIS&#xff09;&#xff0c;正是我们手中解读自然密码、护航生态平衡的精密仪器。今天&#xff0c;让我们深入探讨GIS如何在生物…

万界星空科技QMS系统:重塑质量管理新纪元

万界星空科技QMS&#xff08;Quality Management System&#xff09;质量管理系统是一套全面、高效的质量管理工具&#xff0c;旨在帮助企业提升产品质量、优化生产流程、降低质量成本。该系统具备多个具体功能模块&#xff0c;以下是对其主要功能模块的详细介绍&#xff1a; 一…

通过easyexcel导入数据,添加表格参数的校验,同表格内校验以及和已有数据的校验

引入依赖 <dependency><groupId>com.alibaba</groupId><artifactId>easyexcel</artifactId><version>2.2.11</version><scope>compile</scope></dependency> 需要导入到某个目录下 如果产品名称相同&#xff0c…

收银系统源码-收银台营销功能-购物卡

1. 功能描述 购物卡&#xff1a;基于会员的电子购物卡&#xff0c;支持设置时效、适用门店、以及可用商品&#xff1b;支持售卖和充值赠送&#xff0c;在收银台可以使用&#xff1b; 2.适用场景 会员充值赠送活动&#xff0c;例如会员充值1000元&#xff0c;赠送面值100元购…

Redis基础教程(一):redis配置

&#x1f49d;&#x1f49d;&#x1f49d;首先&#xff0c;欢迎各位来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里不仅可以有所收获&#xff0c;同时也能感受到一份轻松欢乐的氛围&#xff0c;祝你生活愉快&#xff01; &#x1f49d;&#x1f49…

【FFmpeg】av_read_frame函数

目录 1.av_read_frame1.2 从pkt buffer中读取帧&#xff08;avpriv_packet_list_get&#xff09;1.3 从流当中读取帧&#xff08;read_frame_internal&#xff09;1.3.1 读取帧&#xff08;ff_read_packet&#xff09;1.3.2 解析packet&#xff08;parse_packet&#xff09;1.3…

【有哪些GPU算力租用平台值得推荐】

&#x1f308;个人主页: 程序员不想敲代码啊 &#x1f3c6;CSDN优质创作者&#xff0c;CSDN实力新星&#xff0c;CSDN博客专家 &#x1f44d;点赞⭐评论⭐收藏 &#x1f91d;希望本文对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出指正&#xff0c;让我们共…

性能测试、负载测试、压力测试、稳定性测试简单区分【超详细】

&#x1f345; 视频学习&#xff1a;文末有免费的配套视频可观看 &#x1f345; 点击文末小卡片 &#xff0c;免费获取软件测试全套资料&#xff0c;资料在手&#xff0c;涨薪更快 性能测试是一个总称&#xff0c;可细分为性能测试、负载测试、压力测试、稳定性测试。 性能测试…

嵌入式底层系统了解

当裸机功能不复杂的时候&#xff0c;即类似与点亮一个LED灯&#xff0c;驱动LCD和OLED这样的模块&#xff0c;以及各位大学生的搭积木式的毕业设计(狗头保命&#xff09;&#xff0c;此时可以简单地分为硬件和软件层&#xff08;应用层),以及以中间层作为中间联系。 当需要实现…

必备的 Adobe XD 辅助工具

想要高效便捷的使用 Adobe XD&#xff0c; Adobe XD 插件是必不可少的&#xff0c; Adobe XD 的插件非常多&#xff0c;但 90%都是英文&#xff0c;并且良莠不齐。在这儿挑选 9 个好用的 Adobe XD 插件给大家&#xff0c;这里是我整理的一些实用 Adobe XD 插件&#xff0c;让你…

No module named ‘MySQLdb‘

python 运行代码的时候遇到No module named ‘MySQLdb’报错如何解决&#xff1f; 解决办法 如果没有安装可以先安装以下依赖库 pip install PyMySQL如果已经安装了PyMySQL&#xff0c;仍然报MySQLdb模块找不到&#xff0c;可以尝试安装以下依赖库。 pip install mysqlclient

window下git bash设置启动后默认路径进入自己的工程

方法一&#xff1a;更改快捷方式 方法二&#xff1a;修改~/.bashrc

Vulkan学习——渲染3D模型

摘要&#xff1a;本文简要描述了Vulkan渲染一个3D模型需要做的事情&#xff0c;不会对太细节的内容进行深究。   关键字&#xff1a;Vulkan,Render,3D 源码 1 简介 1.1 Vulkan简介 Vulkan是一个低开销、跨平台的二维、三维图形与计算的应用程序接口&#xff08;API&#x…

在windows上安装objection

安装命令pip install objection -i https://mirrors.aliyun.com/pypi/simple hook指定进程 objection -g 测试 explore 进程名不定是包名&#xff0c;也可能是app名字&#xff0c;如“测试”就是app的名字 若出现如下错误&#xff0c;说明python 缺少setuptools 直接安装setu…

全面教程:在Ubuntu上快速部署ZeroTier,实现Windows与VSCode的局域网无缝访问

文章目录 1 背景介绍2 Windows上的操作3 Ubuntu上的操作4 连接 1 背景介绍 在现代工作环境中&#xff0c;远程访问公司内网的Ubuntu主机对于开发者来说是一项基本需求。然而&#xff0c;由于内网的限制&#xff0c;传统的远程控制软件如向日葵和todesk往往无法满足这一需求。作…