吴恩达深度学习笔记:机器学习策略(2)(ML Strategy (2)) 2.7-2.8

目录

  • 第三门课 结构化机器学习项目(Structuring Machine Learning Projects)
    • 第二周:机器学习策略(2)(ML Strategy (2))
      • 2.7 迁移学习(Transfer learning)

第三门课 结构化机器学习项目(Structuring Machine Learning Projects)

第二周:机器学习策略(2)(ML Strategy (2))

2.7 迁移学习(Transfer learning)

深度学习中,最强大的理念之一就是,有的时候神经网络可以从一个任务中习得知识,并将这些知识应用到另一个独立的任务中。所以例如,也许你已经训练好一个神经网络,能够识别像猫这样的对象,然后使用那些知识,或者部分习得的知识去帮助您更好地阅读 x 射线扫描图,这就是所谓的迁移学习。

我们来看看,假设你已经训练好一个图像识别神经网络,所以你首先用一个神经网络,并在(𝑥, 𝑦)对上训练,其中𝑥是图像,𝑦是某些对象,图像是猫、狗、鸟或其他东西。如果你把这个神经网络拿来,然后让它适应或者说迁移,在不同任务中学到的知识,比如放射科诊断,就是说阅读𝑋射线扫描图。你可以做的是把神经网络最后的输出层拿走,就把它删掉,还有进入到最后一层的权重删掉,然后为最后一层重新赋予随机权重,然后让它在放射诊断数据上训练。

在这里插入图片描述
具体来说,在第一阶段训练过程中,当你进行图像识别任务训练时,你可以训练神经网络的所有常用参数,所有的权重,所有的层,然后你就得到了一个能够做图像识别预测的网络。在训练了这个神经网络后,要实现迁移学习,你现在要做的是,把数据集换成新的(𝑥, 𝑦)对,现在这些变成放射科图像,而𝑦是你想要预测的诊断,你要做的是初始化最后一层的权重,让我们称之为𝑤[𝐿]和𝑏[𝐿]随机初始化。

在这里插入图片描述

现在,我们在这个新数据集上重新训练网络,在新的放射科数据集上训练网络。要用放射科数据集重新训练神经网络有几种做法。你可能,如果你的放射科数据集很小,你可能只需要重新训练最后一层的权重,就是𝑤[𝐿]和𝑏[𝐿],并保持其他参数不变。如果你有足够多的数据,你可以重新训练神经网络中剩下的所有层。经验规则是,如果你有一个小数据集,就只训练输出层前的最后一层,或者也许是最后一两层。但是如果你有很多数据,那么也许你可以重新训练网络中的所有参数。如果你重新训练神经网络中的所有参数,那么这个在图像识别数据的初期训练阶段,有时称为预训练(pre-training),因为你在用图像识别数据去预先初始化,或者预训练神经网络的权重。然后,如果你以后更新所有权重,然后在放射科数据上训练,有时这个过程叫微调(fine tuning)。如果你在深度学习文献中看到预训练和微调,你就知道它们说的是这个意思,预训练和微调的权重来源于迁移学习。

在这个例子中你做的是,把图像识别中学到的知识应用或迁移到放射科诊断上来,为什么这样做有效果呢?有很多低层次特征,比如说边缘检测、曲线检测、阳性对象检测(positive objects),从非常大的图像识别数据库中习得这些能力可能有助于你的学习算法在放射科诊断中做得更好,算法学到了很多结构信息,图像形状的信息,其中一些知识可能会很有用,所以学会了图像识别,它就可能学到足够多的信息,可以了解不同图像的组成部分是怎样的,学到线条、点、曲线这些知识,也许对象的一小部分,这些知识有可能帮助你的放射科诊断网络学习更快一些,或者需要更少的学习数据。

在这里插入图片描述
这里是另一个例子,假设你已经训练出一个语音识别系统,现在𝑥是音频或音频片段输入,而𝑦是听写文本,所以你已经训练了语音识别系统,让它输出听写文本。现在我们说你想搭建一个“唤醒词”或“触发词”检测系统,所谓唤醒词或触发词就是我们说的一句话,可以唤醒家里的语音控制设备,比如你说“Alexa”可以唤醒一个亚马逊 Echo 设备,或用“OK Google”来唤醒 Google 设备,用"Hey Siri"来唤醒苹果设备,用"你好百度"唤醒一个百度设备。要做到这点,你可能需要去掉神经网络的最后一层,然后加入新的输出节点,但有时你可以不只加入一个新节点,或者甚至往你的神经网络加入几个新层,然后把唤醒词检测问题的标签𝑦喂进去训练。再次,这取决于你有多少数据,你可能只需要重新训练网络的新层,也许你需要重新训练神经网络中更多的层。

那么迁移学习什么时候是有意义的呢?迁移学习起作用的场合是,在迁移来源问题中你有很多数据,但迁移目标问题你没有那么多数据。例如,假设图像识别任务中你有 1 百万个样本,所以这里数据相当多。可以学习低层次特征,可以在神经网络的前面几层学到如何识别很多有用的特征。但是对于放射科任务,也许你只有一百个样本,所以你的放射学诊断问题数据很少,也许只有 100 次𝑋射线扫描,所以你从图像识别训练中学到的很多知识可以迁移,并且真正帮你加强放射科识别任务的性能,即使你的放射科数据很少。

在这里插入图片描述
对于语音识别,也许你已经用 10,000 小时数据训练过你的语言识别系统,所以你从这10,000 小时数据学到了很多人类声音的特征,这数据量其实很多了。但对于触发字检测,也许你只有 1 小时数据,所以这数据太小,不能用来拟合很多参数。所以在这种情况下,预先学到很多人类声音的特征人类语言的组成部分等等知识,可以帮你建立一个很好的唤醒字检测器,即使你的数据集相对较小。对于唤醒词任务来说,至少数据集要小得多。

在这里插入图片描述
所以在这两种情况下,你从数据量很多的问题迁移到数据量相对小的问题。然后反过来的话,迁移学习可能就没有意义了。比如,你用 100 张图训练图像识别系统,然后有 100 甚至 1000 张图用于训练放射科诊断系统,人们可能会想,为了提升放射科诊断的性能,假设你真的希望这个放射科诊断系统做得好,那么用放射科图像训练可能比使用猫和狗的图像更有价值,所以这里(100 甚至 1000 张图用于训练放射科诊断系统)的每个样本价值比这里(100 张图训练图像识别系统)要大得多,至少就建立性能良好的放射科系统而言是这样。所以,如果你的放射科数据更多,那么你这 100 张猫猫狗狗或者随机物体的图片肯定不会有太大帮助,因为来自猫狗识别任务中,每一张图的价值肯定不如一张𝑋射线扫描图有价值,对于建立良好的放射科诊断系统而言是这样。

所以,这是其中一个例子,说明迁移学习可能不会有害,但也别指望这么做可以带来有意义的增益。同样,如果你用 10 小时数据训练出一个语音识别系统。然后你实际上有 10 个小时甚至更多,比如说 50 个小时唤醒字检测的数据,你知道迁移学习有可能会有帮助,也可能不会,也许把这 10 小时数据迁移学习不会有太大坏处,但是你也别指望会得到有意义的增益。

在这里插入图片描述
所以总结一下,什么时候迁移学习是有意义的?如果你想从任务𝐴学习并迁移一些知识到任务𝐵,那么当任务𝐴和任务𝐵都有同样的输入𝑥时,迁移学习是有意义的。在第一个例子中,𝐴和𝐵的输入都是图像,在第二个例子中,两者输入都是音频。当任务𝐴的数据比任务𝐵多得多时,迁移学习意义更大。所有这些假设的前提都是,你希望提高任务𝐵的性能,因为任务𝐵每个数据更有价值,对任务𝐵来说通常任务𝐴的数据量必须大得多,才有帮助,因为任务𝐴里单个样本的价值没有比任务𝐵单个样本价值大。然后如果你觉得任务𝐴的低层次特征,可以帮助任务𝐵的学习,那迁移学习更有意义一些。

而在这两个前面的例子中,也许学习图像识别教给系统足够多图像相关的知识,让它可以进行放射科诊断,也许学习语音识别教给系统足够多人类语言信息,能帮助你开发触发字或唤醒字检测器。

所以总结一下,迁移学习最有用的场合是,如果你尝试优化任务𝐵的性能,通常这个任务数据相对较少,例如,在放射科中你知道很难收集很多𝑋射线扫描图来搭建一个性能良好的放射科诊断系统,所以在这种情况下,你可能会找一个相关但不同的任务,如图像识别,其中你可能用 1 百万张图片训练过了,并从中学到很多低层次特征,所以那也许能帮助网络在任务𝐵在放射科任务上做得更好,尽管任务𝐵没有这么多数据。迁移学习什么时候是有意义的?它确实可以显著提高你的学习任务的性能,但我有时候也见过有些场合使用迁移学习时,任务𝐴实际上数据量比任务𝐵要少,这种情况下增益可能不多。

好,这就是迁移学习,你从一个任务中学习,然后尝试迁移到另一个不同任务中。从多个任务中学习还有另外一个版本,就是所谓的多任务学习,当你尝试从多个任务中并行学习,而不是串行学习,在训练了一个任务之后试图迁移到另一个任务,所以在下一个视频中,让我们来讨论多任务学习。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/370003.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2024年加密货币市场展望:L1、L2、LSD、Web3 和 GameFi 板块的全面分析与预测

随着区块链技术的快速发展,加密货币市场在2024年继续展现出蓬勃的生机和创新的潜力。本文将深入分析L1、L2、LSD、Web3和GameFi这五大板块的发展趋势和预测,帮助投资者和爱好者更好地理解和把握市场机遇。 一、L1:基础层协议的持续进化 L1&a…

基于Java中的SSM框架实现物流管理系统项目【项目源码+论文说明】

基于Java中的SSM框架实现物流管理系统演示 摘要 企业的发展离不开物流的运输,在一个大型的企业中,商品的生产和建设,推广只是前期的一些工作,在后期的商品销售和物流方面的建立,才能让一个企业得到大力的发展。 企业…

Java经典面试题将一个字符串数组进行分组输出,每组中的字符串都由相同的字符组成

Java经典面试题将一个字符串数组进行分组输出,每组中的字符串都由相同的字符组成 题目: 将一个字符串数组进行分组输出,每组中的字符串都由相同的字符组成 举个例子:输入[“eat”,“tea”,“tan”,“ate”,“nat”,“bat”] 输出…

多个tomcat同时使用 不设置CATALINA_HOME环境变量

通常一台服务器只使用一个tomcat,设置一个CATALINA_HOME的环境变量。但有些时候需要一台服务器启动多个tomcat,那就不能设置CATALINA_HOME了!因为会串~ 我们可以在对应tomcat的startup.bat启动脚本中,加入对应的CATALINA_HOME。 …

Cesium与Three相机同步(3)

Cesium与Three融合的案例demo <!DOCTYPE html> <html lang"en" class"dark"><head><meta charset"UTF-8"><link rel"icon" href"/favicon.ico"><meta name"viewport" content&q…

观察矩阵(View Matrix)、投影矩阵(Projection Matrix)、视口矩阵(Window Matrix)及VPM矩阵及它们之间的关系

V表示摄像机的观察矩阵&#xff08;View Matrix&#xff09;&#xff0c;它的作用是把对象从世界坐标系变换到摄像机坐标系。因此&#xff0c;对于世界坐标系下的坐标值worldCoord(x0, y0, z0)&#xff0c;如果希望使用观察矩阵VM将其变换为摄像机坐标系下的坐标值localCoord(x…

html+js+css在线倒计时

代码在图片后面 点赞加关注 谢谢大佬照顾&#x1f61c; 图例 时间到前 时间到后 源代码 <!DOCTYPE html> <html lang"en"> <head> <meta charset"UTF-8"> <meta name"viewport" content"widthdevice-width,…

设置单实例Apache HTTP服务器

配置仓库 [rootlocalhost ~]# cd /etc/yum.repos.d/ [rootlocalhost yum.repos.d]# vi rpm.repo仓库代码&#xff1a; [BaseOS] nameBaseOS baseurl/mnt/BaseOS enabled1 gpgcheck0[AppStream] nameAppStream baseurl/mnt/AppStream enabled1 gpgcheck0挂载 [rootlocalhost …

数据结构--单链表实现

欢迎光顾我的homepage 前言 链表和顺序表都是线性表的一种&#xff0c;但是顺序表在物理结构和逻辑结构上都是连续的&#xff0c;但链表在逻辑结构上是连续的&#xff0c;而在物理结构上不一定连续&#xff1b;来看以下图片来认识链表与顺序表的差别 这里以动态顺序表…

深度解析Java世界中的对象镜像:浅拷贝与深拷贝的奥秘与应用

在Java编程的浩瀚宇宙中&#xff0c;对象拷贝是一项既基础又至关重要的技术。它直接关系到程序的性能、资源管理及数据安全性。然而&#xff0c;提及对象拷贝&#xff0c;不得不深入探讨其两大核心类型&#xff1a;浅拷贝&#xff08;Shallow Copy&#xff09;与深拷贝&#xf…

CAN转PN网关模块连接激光切割机的配置方法

激光切割机在工业生产中被广泛应用&#xff0c;而激光发射器与控制设备常以不同的协议存在两者之间&#xff0c;CAN总线和Profinet以各自的特点被广泛用于设备当中。本文将介绍介绍兴达易控CAN转Profinet网关模块&#xff08;XD-PN_CAN20&#xff09;连接 CAN 激光切割机的使用…

WGAN(Wassertein GAN)

WGAN E x ∼ P g [ log ⁡ ( 1 − D ( x ) ) ] E x ∼ P g [ − log ⁡ D ( x ) ] \begin{aligned} & \mathbb{E}_{x \sim P_g}[\log (1-D(x))] \\ & \mathbb{E}_{x \sim P_g}[-\log D(x)] \end{aligned} ​Ex∼Pg​​[log(1−D(x))]Ex∼Pg​​[−logD(x)]​ 原始 GAN …

Python爬虫教程第1篇-基础知识

文章目录 什么是爬虫爬虫的工作原理用途搜索引擎爬虫Robots协议HTTP的请求过程URL的含义HTTP常见请求头爬虫常用的技术 什么是爬虫 信息的交互是通过web网页、或者移动端等不同的客户端端形式进行交互&#xff0c;这个过程是一个人与网路正常的交互行为。而爬虫可以用来模拟人…

SwiftUI 6.0(iOS 18.0)滚动视图新增的滚动阶段(Scroll Phase)监听功能趣谈

何曾几时&#xff0c;在 SwiftUI 开发中的秃头小码农们迫切需要一种能够读取当前滚动状态的方法。 在过去&#xff0c;他们往往需要借助于 UIKit 的神秘力量。不过这一切在 SwiftUI 6.0 中已成“沧海桑田”。 在本篇博文中&#xff0c;您将学到如下内容&#xff1a; 1. Scroll…

植物大战僵尸融合版最新版1.0下载及安装教程

《植物大战僵尸融合版》最新版1.0已经发布&#xff0c;为粉丝们带来了全新的游戏体验。这个版本由B站UP主蓝飘飘fly精心打造&#xff0c;引入了创新的植物融合玩法&#xff0c;让玩家可以享受策略和创意的结合。以下是游戏的详细介绍和安装指南&#xff1a; 游戏特色介绍 全新…

审核平台前端新老仓库迁移

背景 审核平台接入50业务&#xff0c;提供在线审核及离线质检、新人培训等核心能力&#xff0c;同时提供数据报表、资源追踪、知识库等工具。随着平台的飞速发展&#xff0c;越来越多的新业务正在或即将接入审核平台&#xff0c;日均页面浏览量为百万级别。如今审核平台已是公司…

可验证算法在招投标领域的专家“盲抽”中的标段识别码加密应用研究

摘要 在招投标过程中&#xff0c;标段&#xff08;包&#xff09;识别码的安全性至关重要。本文提出了一种基于可验证算法的标段识别码加密方法&#xff0c;以确保其在专家“盲抽”过程中的保密性和可信性。通过对不同表的标段识别码进行全量加密&#xff0c;并通过匹配验证其…

【Nginx】docker运行Nginx及配置

Nginx镜像的获取 直接从Docker Hub拉取Nginx镜像通过Dockerfile构建Nginx镜像后拉取 二者区别 主要区别在于定制化程度和构建过程的控制&#xff1a; 直接拉取Nginx镜像&#xff1a; 简便性&#xff1a;直接使用docker pull nginx命令可以快速拉取官方的Nginx镜像。这个过程…

SpringBoot 启动流程四

SpringBoot启动流程四 前面这个创建对象是初始化SpringApplication对象 是加载了SpringBoot程序的所有相关配置 我们接下来要将这个run方法 run过程是一个运行 初始化容器 我们看我们的运行结果是得到一个ConfigurableApplicationContext对象 package com.bigdata1421.star…

【Android】Android基础--显式Intent和隐式Intent

人不走空 &#x1f308;个人主页&#xff1a;人不走空 &#x1f496;系列专栏&#xff1a;算法专题 ⏰诗词歌赋&#xff1a;斯是陋室&#xff0c;惟吾德馨 目录 &#x1f308;个人主页&#xff1a;人不走空 &#x1f496;系列专栏&#xff1a;算法专题 ⏰诗词歌…