基于S32K144驱动NSD8381

文章目录

    • 1.前言
    • 2.芯片介绍
      • 2.1 芯片简介
      • 2.2 硬件特性
      • 2.3 软件特性
    • 3.测试环境
      • 3.1 工具
      • 3.2 架构
    • 4.软件驱动
      • 4.1 SPI
      • 4.2 CTRL引脚
      • 4.3 寄存器
      • 4.4 双极性步进电机驱动流程
    • 5.测试情况
    • 6.参考资料

1.前言

最近有些做电磁阀和调光大灯的客户需要寻找国产的双极性步进电机驱动,笔者给客户推荐了纳芯微的NSD8381。由于是第一次接触这类芯片,笔者找原厂申请了NSD8381开发板,搭配淘宝买的电机以及S32K144EVB,简单进行了软件调试,便于更好的了解该芯片。

2.芯片介绍

2.1 芯片简介

NSD8308是纳芯微主推的双极性步进电机驱动,目标应用有汽车调光电机,HUD角度调整电机驱动器、电磁阀等。

该芯片最高支持1/32微步的双极性步进电机驱动,让电机更平滑的运动。最大驱动电流1.35A。此外,该设备还具备SPI接口,用于控制输出电流以及设置堵转保护并提供诊断信息。

2.2 硬件特性

  • 可以根据需要配置为双极性步进驱动模式或双H桥模式或四半桥模式,以支持不同的负载。
  • 4.5V至36V的宽工作电压范围,支持最大1.35A的可编程电流。
  • 逻辑输入引脚 (CTRL1/2/3/4): 可编程用于步进模式的STEP/DIR/HOLD输入或直接半桥控制。
  • 故障指示输出 (DOUT1/DOUT2): 根据SPI设置,可用作故障指示或内部PWM信号输出。
  • 支持过温,过流保护,以及开路,堵转检测。
  • 提供VQFN40和VQFN32两种封装。

2.3 软件特性

  • SPI接口:24bit/帧、4MHz的SPI接口进行配置和通信。
  • 寄存器配置:具有丰富的寄存器配置选项,包括电流设定、步进模式选择、输出阶段配置等。
  • 故障诊断:可以通过SPI读取和清除故障状态,包括过流、过温等。
  • 电流调节:内置PWM控制器和电流控制环,实现精确的电流调节。
  • 步进模式:支持全步、半步、1/4步、1/8微步、1/16微步和1/32微步等多种步进模式。

3.测试环境

3.1 工具

测试需要的工具为:

  • NSD8381官方demo板

NSD8381 demo board[图片来源于纳芯微]

  • S32K144EVB-Q100
  • 三拓Nema14混合式35HS步进电机

3.2 架构

整个测试电路的架构和NSD8381的推荐电路图一致,如下所示:

测试电路

NSD8381官方demo板有两种封装,和S32K144EVB以及步进电机的引脚连接如下图所示:

引脚连接图

4.软件驱动

4.1 SPI

NSD8381的SPI接口要求如下图:

NSD8381通过SPI接收的一帧数据为24bit,组成部分如下:

  • MCU发给NSD8381的帧结构:

注意最低bit是奇数校验,用来确保一帧SPI数据中值为1的数量为奇数。具体计算方式为,计算SPI一帧中bit23到bit1的值为1的数量,如果总数为偶数,bit0赋值为1.否则赋值为0。

官方驱动提供的奇位校验代码如下:

void Parity_check(uint8_t (*num))
{uint8_t i,j,k;//uint32_t result;k=0;for(j=0;j<3;j++){for(i=0;i<8;i++){k+=(uint8_t)(((uint8_t)(*(num+j)>>i))&0x01);}}if((k & 0x01)==0){*(num+2)=*(num+2)+1;}}
  • NSD8381返回给MCU的帧结构:
  • 其中Global status byte的详细说明如下表:

S32K144的SPI外设配置如下:


  1. 这里选择8bits/frames是因为S32K144的RTD3.0不支持24bits/frame,填写24bits/frame会导致SPI数据发不出来。
  2. 勾选pcs连续是因为NSD8381数据手册要求PCS的高电平持续时间最小为6us。如果不勾选,会导致发送的三个字节数据之间的pcs有拉高操作,NSD8381会回复SPI ERR。

SPI发送函数定义如下,使用3个元素的8bit数组存放数据:

4.2 CTRL引脚

NSD8381的CTRL引脚的功能如下,使用双极性步进电机驱动模式时,推荐CTRL1用作步进输入,CTRL2用作方向控制,详细说明参考NSD8381数据手册。

CTRL引脚功能

对CTR1引脚进行PWM输入的配置如下:

这里PWM初始化时,设置的MOD值为4000,后续更改PWM频率时要确定CNT值大于4000,否则会导致PWM引脚一直输出高电平。

4.3 寄存器

NSD8381寄存器map

上图为NSD8381的寄存器,主要有如下几种:

状态寄存器 (Status Registers)

  • STA_1 (0x01): 包含电源、过温、开路负载、过流和堵转等状态标志。例如,OC位(D3)表示过流状态,STALL位(D2)表示堵转状态。
  • STA_2 (0x02): 包含各半桥臂的过流状态、开路负载状态、BEMF电压转换超出上限和下限的状态标志。

控制寄存器 (Control Registers)

  • CONFIG_1 (0x03): 控制充电泵和电流调节的PWM频率,以及模拟输出选择。例如,CP_SS位(D15)控制充电泵频率是否固定,PWM_SS位(D14)控制电流调节PWM频率是否固定。
  • CONFIG_2 (0x04): 配置DOUT1和DOUT2的功能选择。例如,DOUT1_SEL[1:0]位(D11-D10)选择DOUT1引脚的功能。
  • CONFIG_3 (0x05): 控制驱动使能、HOLD模式、步进模式和方向控制。例如,DRV_EN位(D15)控制输出阶段是否使能。
  • CONFIG_4 (0x06): 设置PWM频率、滤波时间、斜率选择和衰减模式。例如,PWM_FREQ_SEL[1:0]位(D15-D14)选择电流调节PWM的频率。
  • CONFIG_5 (0x07): 控制BEMF电压转换功能、延迟时间和堵转检测。例如,CV_EN位(D15)使能BEMF电压转换功能。
  • CONFIG_6 (0x08): 设置正常运行模式和HOLD模式下的全尺寸电流。例如,IFSH[3:0]位(D15-D12)设置HOLD模式下的全尺寸电流。
  • CONFIG_7 (0x10): 控制半桥的HIZ状态、版本信息、设备ID和UTWARN标志。例如,OUTA1_HIZ位(D15)控制半桥OUTA1是否置为高阻态。
  • CONFIG_8 (0x11): 控制充电泵频率、HOLD模式功能、过流保护滤波时间等。例如,CP_SS_CONFIG位(D15)选择充电泵的频谱扩展调制频率。
  • CONFIG_9 (0x12): 提供CONFIG_8寄存器的锁定/解锁控制。例如,UNLOCK位(D1)用于解锁CONFIG_8寄存器的特定位,允许写入操作。

BEMF电压转换寄存器 (BEMF Voltage Conversion Registers)

  • CVA, CVB, CVC, CVD (0x09 to 0x0C): 存储在不同相位计数器位置下的BEMF电压转换的数字值。这些寄存器的值用于堵转检测和电机性能分析。

低限和高限寄存器 (Low and High Limit Registers)

  • CVLLB (0x0D): 设置BEMF电压低限B阈值。
  • CVLLA (0x0E): 设置BEMF电压低限A阈值。
  • CVUL (0x0F): 设置BEMF电压高限阈值。

寄存器地址对应的代码如下:

void NSD8381drv_Init (void)
{uint8_t i;for (i = 0U; i < 3U; i++){STA1Reg[i] = 0U;STA2Reg[i] = 0U;CONFIG1Reg[i] = 0U;CONFIG2Reg[i] = 0U;CONFIG3Reg[i] = 0U;CONFIG4Reg[i] = 0U;CONFIG5Reg[i] = 0U;CONFIG6Reg[i] = 0U;CONFIG7Reg[i] = 0U;CONFIG8Reg[i] = 0U;CONFIG9Reg[i] = 0U;MCVAReg[i] =0U;MCVBReg[i] =0U;MCVCReg[i] =0U;MCVDReg[i] =0U;MCVReg[i]=0u;MCVLLBReg[i]=0U;MCVLLAReg[i]=0U;MCVULReg[i]=0U;CtrlReg_Result[i] = 0U;StatReg_Result[i] = 0U;CtrlallReg[i]=0U;ClearAllSReg[i]=0U;ClearSTA1Reg[i]=0U;ClearSTA2Reg[i]=0U;		}// register addressSTA1Reg[0] = (uint8_t)(0x01U);STA2Reg[0] = (uint8_t)(0x02U);CONFIG1Reg[0] = (uint8_t)(0x03U);CONFIG2Reg[0] = (uint8_t)(0x04U);CONFIG3Reg[0] = (uint8_t)(0x05U);CONFIG4Reg[0] = (uint8_t)(0x06U);CONFIG5Reg[0] = (uint8_t)(0x07U);CONFIG6Reg[0] = (uint8_t)(0x08U);MCVAReg[0]=(uint8_t)(0x09U);MCVBReg[0]=(uint8_t)(0x0AU);MCVCReg[0]=(uint8_t)(0x0BU);MCVDReg[0]=(uint8_t)(0x0CU);MCVLLBReg[0]=(uint8_t)(0x0DU);MCVLLAReg[0]= (uint8_t)(0x0EU);MCVULReg[0]= (uint8_t)(0x0FU);CONFIG7Reg[0] = (uint8_t)(0x10U);CONFIG8Reg[0] = (uint8_t)(0x11U);CONFIG9Reg[0] = (uint8_t)(0x12U);
}

4.4 双极性步进电机驱动流程

NSD8381用作双极性步进电机驱动时的驱动流程图如下:

双极性步电机驱动流程[图片来源于纳芯微]

这部分的流程代码如下,未包含堵转检测功能,如果想使用堵转检测功能,请查看文末的参考资料。

5.测试情况

最终完整的工程功能为:

  • 按键按键SW2,执行NSD8381初始化流程,并且CTRL1输入的PWM频率为250Hz。
  • 按下按键SW3,改变CTRL2输入的PWM波频率,每次增加250Hz,如果超过1000Hz,恢复到250Hz。

SPI发送的数据波形如下图:

其中,黄色为CLK波形,紫色为数据波形,蓝色为片选波形。

第一帧数据波形

初始化的四帧数据

测试时的串口打印信息如下:

测试的视频如下:

NSD8381

工程已放到百度网盘,链接如下:

  • 链接: https://pan.baidu.com/s/1K2bTEg-X7n8COv5maCWSlQ
  • 提取码: vg2w

6.参考资料

  • 数据手册:

https://www.novosns.com/Public/Uploads/uploadfile/files/20240618/NSD8381Datasheet_version_Rev1.0.pdf

  • 步进电机驱动NSD8381调试指南:

https://www.novosns.com/technical-articles-385

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/371292.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

mysql 命令 —— 查看表信息(show table status)

查询表信息&#xff0c;如整个表的数据量大小、表的索引占用空间大小等 1、查询某个库下面的所有表信息&#xff1a; SHOW TABLE STATUS FROM your_database_name;2、查询指定的表信息&#xff1a; SHOW TABLE STATUS LIKE your_table_name;如&#xff1a;Data_length 显示表…

郭明錤:苹果将为Vision Pro推出红外摄像头款AirPods

在科技界,苹果公司的每一次创新都备受瞩目。近日,著名苹果分析师郭明錤透露了一个令人振奋的消息:苹果计划在2026年推出配备红外摄像头的新款AirPods,这款耳机将特别优化与Apple Vision Pro头显的空间体验。这一消息不仅预示着苹果在音频设备领域的又一次技术飞跃,也进一步…

记录第一次使用air热更新golang项目

下载 go install github.com/cosmtrek/airlatest 下载时提示&#xff1a; module declares its path as: github.com/air-verse/air but was required as: github.com/cosmtrek/air 此时&#xff0c;需要在go.mod中加上这么一句&#xff1a; replace github.com/cosmtrek/air &…

【项目管理】常见的敏捷实践:Scrum框架

【项目管理】常见的敏捷实践&#xff1a;Scrum框架 精益、敏捷与Scrum框架Scrum框架实践Sprint&#xff08;冲刺&#xff09;Scrum角色Scrum工件Scrum会议 精益、敏捷与Scrum框架 敏捷与精益思想、看板、Scrum等概念的关系如下图所示&#xff1a; Lean 精益 Kanban 看板 Ag…

QT入门笔记-自定义控件封装 30

具体代码如下: QT core guigreaterThan(QT_MAJOR_VERSION, 4): QT widgetsCONFIG c17# You can make your code fail to compile if it uses deprecated APIs. # In order to do so, uncomment the following line. #DEFINES QT_DISABLE_DEPRECATED_BEFORE0x060000 …

Kyutai 推出了 Moshi Chat,这是一种既可以实时收听又可以说话的 AI

Kyutai 是一家专注于开放式 AI 研究的非营利性实验室&#xff0c;它推出了开源的 Moshi Chat 项目 Kyutai 是一家致力于推进人工智能 &#xff08;AI&#xff09; 开放研究的非营利性实验室&#xff0c;其最新创新 Moshi Chat 取得了重大进展。这种尖端的实时原生多模态基础模…

加密(3)非对称加密

一、介绍 1、概念 非对称加密&#xff0c;又称现代加密算法&#xff0c;非对称加密是计算机通信安全的基石&#xff0c;保证了加密数据不会被破解。加密和解密使用的是两个不同的密钥&#xff0c;这种算法叫作非对称加密算法。 2、示例 首先生成密钥对, 公钥为(5,14)&#…

【图解大数据技术】Flume、Kafka、Sqoop

【图解大数据技术】Flume、Kafka、Sqoop FlumeFlume简介Flume的应用场景 KafkaKafka简介Kafka架构Flume与Kafka集成 SqoopSqoop简介Sqoop原理sqoop搭配任务调度器实现定时数据同步 Flume Flume简介 Flume是一个数据采集工具&#xff0c;多用于大数据技术架构下的日志采集。 …

【C++】#1

关键字&#xff1a; 基本框架、多个main执行、快捷键、cout规则 基本框架&#xff1a; #include <iostream> using namespace std;int main() {//具体内容return 0; } 多个main函数可执行&#xff1a; 常用快捷键&#xff1a; cout规则&#xff1a;

使用 Git Hooks 防止敏感信息泄露

欢迎关注公众号&#xff1a;冬瓜白 在日常开发中&#xff0c;我们可能会不小心将敏感信息提交到 Git。为了防止这种情况&#xff0c;可以利用 Git Hooks 编写一个简单的脚本&#xff0c;当发现提交中包含敏感词时&#xff0c;给出提示。 以下是一个基于 pre-commit 钩子的示例…

Stream流真的很好,但答应我别用toMap()

你可能会想&#xff0c;toList 和 toSet 都这么便捷顺手了&#xff0c;当又怎么能少得了 toMap() 呢。 答应我&#xff0c;一定打消你的这个想法&#xff0c;否则这将成为你噩梦的开端。 让我们先准备一个用户实体类。 Data AllArgsConstructor public class User { priv…

算法-常见数据结构设计

文章目录 1. 带有setAll功能的哈希表2. LRU缓存结构3. O(1)时间插入删除随机(去重)4. O(1)时间插入删除随机(不去重)5. 快速获取数据流中的中位数6. 最大频率栈7. 全O(1)结构8. LFU缓存结构 本节的内容比较难, 大多是leetcodeHard难度级别的题目 1. 带有setAll功能的哈希表 哈希…

智能交通(3)——Learning Phase Competition for Traffic Signal Control

论文分享 https://dl.acm.org/doi/pdf/10.1145/3357384.3357900https://dl.acm.org/doi/pdf/10.1145/3357384.3357900 论文代码 https://github.com/gjzheng93/frap-pubhttps://github.com/gjzheng93/frap-pub 摘要 越来越多可用的城市数据和先进的学习技术使人们能够提…

【2024_CUMCM】时间序列算法ARMA

目录 2023-c-问题二 问题分析 介绍 单位根检验 白噪声检验 自相关和偏自相关图 利用信息准则定阶 构建AMIMA模型 D-W检验 预测 代码 2023-c-问题二 问题分析 ARMA适合多个领域的时间序列分析&#xff0c;不同时间的定价策略属于这类问题。 介绍 ARMA模型&…

《python程序语言设计》2018版第5章第52题利用turtle绘制sin函数

这道题是送分题。因为循环方式已经写到很清楚&#xff0c;大家照抄就可以了。 但是如果说光照抄可是会有问题。比如我们来演示一下。 import turtleturtle.penup() turtle.goto(-175, 50 * math.sin((-175 / 100 * 2 * math.pi))) turtle.pendown() for x in range(-175, 176…

芯片封装简介

1、背景 所谓“封装技术”是一种将集成电路用绝缘的塑料或陶瓷材料打包的技术。以CPU为例&#xff0c;实际看到的体积和外观并不是真正的CPU内核的大小和面貌&#xff0c;而是CPU内核等元件经过封装后的产品。封装技术对于芯片来说是必须的&#xff0c;也是至关重要的。因为芯片…

鸿蒙开发管理:【@ohos.account.distributedAccount (分布式帐号管理)】

分布式帐号管理 本模块提供管理分布式帐号的一些基础功能&#xff0c;主要包括查询和更新帐号登录状态。 说明&#xff1a; 本模块首批接口从API version 7开始支持。后续版本的新增接口&#xff0c;采用上角标单独标记接口的起始版本。开发前请熟悉鸿蒙开发指导文档&#xff…

【扩散模型】LCM LoRA:一个通用的Stable Diffusion加速模块

潜在一致性模型&#xff1a;[2310.04378] Latent Consistency Models: Synthesizing High-Resolution Images with Few-Step Inference (arxiv.org) 原文&#xff1a;Paper page - Latent Consistency Models: Synthesizing High-Resolution Images with Few-Step Inference (…

【数据结构】经典链表题目详解集合(反转链表、相交链表、链表的中间节点、回文链表)

文章目录 一、反转链表1、程序详解2、代码 二、相交链表1、程序详解2、代码 三、链表的中间节点1、程序详解2、代码 四、回文链表1、程序详解2、代码 一、反转链表 1、程序详解 题目&#xff1a;给定单链表的头节点 head &#xff0c;请反转链表&#xff0c;并返回反转后的链…

聚焦大模型应用落地,2024全球数字经济大会人工智能专题论坛在京举办

7月1日下午&#xff0c;2024全球数字经济大会人工智能专题论坛在中关村国家自主创新示范区会议中心举办。论坛紧扣大模型应用落地这一热点&#xff0c;以“应用即未来——大模型赋能千行百业&#xff0c;新生态拥抱产业未来”为主题&#xff0c;备受社会各界关注。 一、北京已…