LLM应用构建前的非结构化数据处理(三)文档表格的提取

1.学习内容

本节次学习内容来自于吴恩达老师的Preprocessing Unstructured Data for LLM Applications课程,因涉及到非结构化数据的相关处理,遂做学习整理。
本节主要学习pdf中的表格数据处理

2.环境准备

和之前一样,可以参考LLM应用构建前的非结构化数据处理(一)标准化处理认识数据
,其中配置信息保持一致

同样的,需要unstructured.io上获取APIkey。

3.开始尝试

3.1导入环境

# Warning control
import warnings
warnings.filterwarnings('ignore')from unstructured_client import UnstructuredClient
from unstructured_client.models import shared
from unstructured_client.models.errors import SDKErrorfrom unstructured.staging.base import dict_to_elements
# 初始化API
s = UnstructuredClient(api_key_auth="XXX",server_url="https://api.unstrXXX",
)

3.2样例浏览

from IPython.display import Image
Image(filename="images/embedded-images-tables.jpg", height=600, width=600) 

输出如下:
在这里插入图片描述

3.3处理pdf文档

filename = "example_files/embedded-images-tables.pdf"with open(filename, "rb") as f:files=shared.Files(content=f.read(),file_name=filename,)req = shared.PartitionParameters(files=files,strategy="hi_res",hi_res_model_name="yolox",skip_infer_table_types=[],pdf_infer_table_structure=True,
)try:resp = s.general.partition(req)elements = dict_to_elements(resp.elements)
except SDKError as e:print(e)
# 找到处理数据中的Table元素的unstructured对象数据
tables = [el for el in elements if el.category == "Table"]
tables[0].text

输出如下:

'Inhibitor Polarization Corrosion be (V/dec) ba (V/dec) Ecorr (V) icorr (AJcm?) concentration (g) resistance (Q) rate (mmj/year) 0.0335 0.0409 —0.9393 0.0003 24.0910 2.8163 1.9460 0.0596 .8276 0.0002 121.440 1.5054 0.0163 0.2369 .8825 0.0001 42121 0.9476 s NO 03233 0.0540 —0.8027 5.39E-05 373.180 0.4318 0.1240 0.0556 .5896 5.46E-05 305.650 0.3772 = 5 0.0382 0.0086 .5356 1.24E-05 246.080 0.0919'

将其转为html形式

table_html = tables[0].metadata.text_as_html
table_html

输出如下:

'<table><thead><tr><th>Inhibitor concentration (g)</th><th>be (V/dec)</th><th>ba (V/dec)</th><th>Ecorr (V)</th><th>icorr (AJcm?)</th><th>Polarization resistance (Q)</th><th>Corrosion rate (mmj/year)</th></tr></thead><tbody><tr><td></td><td>0.0335</td><td>0.0409</td><td>—0.9393</td><td>0.0003</td><td>24.0910</td><td>2.8163</td></tr><tr><td>NO</td><td>1.9460</td><td>0.0596</td><td>—0.8276</td><td>0.0002</td><td>121.440</td><td>1.5054</td></tr><tr><td></td><td>0.0163</td><td>0.2369</td><td>—0.8825</td><td>0.0001</td><td>42121</td><td>0.9476</td></tr><tr><td>s</td><td>03233</td><td>0.0540</td><td>—0.8027</td><td>5.39E-05</td><td>373.180</td><td>0.4318</td></tr><tr><td></td><td>0.1240</td><td>0.0556</td><td>—0.5896</td><td>5.46E-05</td><td>305.650</td><td>0.3772</td></tr><tr><td>= 5</td><td>0.0382</td><td>0.0086</td><td>—0.5356</td><td>1.24E-05</td><td>246.080</td><td>0.0919</td></tr></tbody></table>'

3.4 格式化呈现

from io import StringIO 
from lxml import etreeparser = etree.XMLParser(remove_blank_text=True)
file_obj = StringIO(table_html)
tree = etree.parse(file_obj, parser)
print(etree.tostring(tree, pretty_print=True).decode())

输出如下:

<table><thead><tr><th>Inhibitor concentration (g)</th><th>be (V/dec)</th><th>ba (V/dec)</th><th>Ecorr (V)</th><th>icorr (AJcm?)</th><th>Polarization resistance (Q)</th><th>Corrosion rate (mmj/year)</th></tr></thead><tbody><tr><td/><td>0.0335</td><td>0.0409</td><td>&#8212;0.9393</td><td>0.0003</td><td>24.0910</td><td>2.8163</td></tr><tr><td>NO</td><td>1.9460</td><td>0.0596</td><td>&#8212;0.8276</td><td>0.0002</td><td>121.440</td><td>1.5054</td></tr><tr><td/><td>0.0163</td><td>0.2369</td><td>&#8212;0.8825</td><td>0.0001</td><td>42121</td><td>0.9476</td></tr><tr><td>s</td><td>03233</td><td>0.0540</td><td>&#8212;0.8027</td><td>5.39E-05</td><td>373.180</td><td>0.4318</td></tr><tr><td/><td>0.1240</td><td>0.0556</td><td>&#8212;0.5896</td><td>5.46E-05</td><td>305.650</td><td>0.3772</td></tr><tr><td>= 5</td><td>0.0382</td><td>0.0086</td><td>&#8212;0.5356</td><td>1.24E-05</td><td>246.080</td><td>0.0919</td></tr></tbody>
</table>

3.5 还原表格到html中显示

from IPython.core.display import HTML
HTML(table_html)

输出如下:在这里插入图片描述

3.6 借助langchain进行摘要

from langchain_openai import ChatOpenAI
from langchain_core.documents import Document
from langchain.chains.summarize import load_summarize_chainllm = ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo-1106")
chain = load_summarize_chain(llm, chain_type="stuff")
chain.invoke([Document(page_content=table_html)])

输出如下:

{'input_documents': [Document(page_content='<table><thead><tr><th>Inhibitor concentration (g)</th><th>be (V/dec)</th><th>ba (V/dec)</th><th>Ecorr (V)</th><th>icorr (AJcm?)</th><th>Polarization resistance (Q)</th><th>Corrosion rate (mmj/year)</th></tr></thead><tbody><tr><td></td><td>0.0335</td><td>0.0409</td><td>—0.9393</td><td>0.0003</td><td>24.0910</td><td>2.8163</td></tr><tr><td>NO</td><td>1.9460</td><td>0.0596</td><td>—0.8276</td><td>0.0002</td><td>121.440</td><td>1.5054</td></tr><tr><td></td><td>0.0163</td><td>0.2369</td><td>—0.8825</td><td>0.0001</td><td>42121</td><td>0.9476</td></tr><tr><td>s</td><td>03233</td><td>0.0540</td><td>—0.8027</td><td>5.39E-05</td><td>373.180</td><td>0.4318</td></tr><tr><td></td><td>0.1240</td><td>0.0556</td><td>—0.5896</td><td>5.46E-05</td><td>305.650</td><td>0.3772</td></tr><tr><td>= 5</td><td>0.0382</td><td>0.0086</td><td>—0.5356</td><td>1.24E-05</td><td>246.080</td><td>0.0919</td></tr></tbody></table>')],'output_text': 'The table provides data on the corrosion rate and polarization resistance of different inhibitor concentrations in a solution. The data includes the inhibitor concentration, be and ba values, Ecorr, icorr, polarization resistance, and corrosion rate. The table shows the impact of different inhibitor concentrations on the corrosion rate and polarization resistance.'}

4. 总结

可以看到,非结构化数据识别还是有难度,不知道为什么,实验中部分识别结果是错的,如果追求准确性,还是得斟酌一下。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/373177.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Raylib 实现超大地图放大缩小与两种模式瓦片地图刷新

原理&#xff1a; 一种刷新模式&#xff1a; 在宫格内整体刷新&#xff0c;类似九宫格移动到边缘&#xff0c;则九宫格整体平移一个宫格&#xff0c;不过这里是移动一个瓦片像素&#xff0c;实际上就是全屏刷新&#xff0c;这个上限是 笔记本 3060 70帧 100*100个瓦片每帧都…

压缩感知3——重构算法正交匹配追踪算法

算法流程 问题的实质是&#xff1a;AX Y 求解&#xff08;A是M维&#xff0c;Y是N维且N>>M并且稀疏度K<M&#xff09;明显X有无穷多解&#xff0c;重构过程是M次采样得到的采样值升维的过程。OMP算法的具体步骤&#xff1a;(1)用X表示信号&#xff0c;初始化残差e0 …

802.11漫游流程简单解析与笔记_Part2_05_wpa_supplicant如何通过nl80211控制内核开始关联

最近在进行和802.11漫游有关的工作&#xff0c;需要对wpa_supplicant认证流程和漫游过程有更多的了解&#xff0c;所以通过阅读论文等方式&#xff0c;记录整理漫游相关知识。Part1将记录802.11漫游的基本流程、802.11R的基本流程、与认证和漫游都有关的三层秘钥基础。Part1将包…

C#用反射机制调用dll文件的字段、属性和方法

1、创建dll文件 using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks;namespace CLStudent {public class Student{//字段public string Name "Tom";//属性public double ChineseScore { get; s…

connect to github中personal access token生成token方法

一、问题 执行git push时弹出以下提示框 二、解决方法 去github官网生成Token&#xff0c;步骤如下 选择要授予此 令牌token 的 范围 或 权限 要使用 token 从命令行访问仓库&#xff0c;请选择 repo 。 要使用 token 从命令行删除仓库&#xff0c;请选择 delete_repo 其他根…

下载Windows版本的pycharm

Python环境搭建 第一步下载安装python 等待安装完成 验证python是否安装成功 Python开发工具安装部署 JetBrains: Essential tools for software developers and teams PyCharm: the Python IDE for data science and web development 下载社区版本的PyCharm 双击打开下载好的…

C++20中的基于范围的for循环(range-based for loop)

C11中引入了对基于范围的for循环(range-based for loop)的支持&#xff1a;该循环对一系列值(例如容器中的所有元素)进行操作。代码段如下&#xff1a; const std::vector<int> vec{ 1,2,3,4,5 }; for (const auto& i : vec)std::cout << i << ", …

Github Actions 构建Vue3 + Vite项目

本篇文章以自己创建的项目为例&#xff0c;用Github Actions构建。 Github地址&#xff1a;https://github.com/ling08140814/myCarousel 访问地址&#xff1a;https://ling08140814.github.io/myCarousel/ 具体步骤&#xff1a; 1、创建一个Vue3的项目&#xff0c;并完成代…

书生大模型实战营(暑假场)-入门岛-第一关

书生大模型实战营暑假场重磅开启&#xff01;&#xff0c;这场学习路线看起来很好玩呀&#xff0c;闯关学习既能学到知识又有免费算力可得&#xff0c;太良心啦。感兴趣的小伙伴赶快一起报名学习吧&#xff01;&#xff01;&#xff01; 关卡任务 好的&#xff0c;我们废话不多…

CentOS6用文件配置IP模板

CentOS6用文件配置IP模板 到 CentOS6.9 , 默认还不能用 systemctl , 能用 service chkconfig sshd on 对应 systemctl enable sshd 启用,开机启动该服务 ### chkconfig sshd on 对应 systemctl enable sshd 启用,开机启动该服务 sudo chkconfig sshd onservice sshd start …

Profibus转ModbusTCP网关模块实现Profibus_DP向ModbusTCP转换

Profibus和ModbusTCP是工业控制自动化常用的二种通信协议。Profibus是一种串口通信协议&#xff0c;它提供了迅速靠谱的数据传输和各种拓扑结构&#xff0c;如总线和星型构造。Profibus可以和感应器、执行器、PLC等各类设备进行通信。 ModbusTCP是一种基于TCP/IP协议的通信协议…

FPGA开发笔试1

1. 流程简介 我是两天前有FPGA公司的HR来问我实习的事情&#xff0c;她当时问我距离能不能接受&#xff0c;不过确实距离有点远&#xff08;地铁通勤要将近一个半小时&#xff09;&#xff0c;然后她说给我约个时间&#xff0c;抽空做1个小时的题目&#xff08;线上做&#xf…

800 元打造家庭版 SOC 安全运营中心

今天,我们开始一系列新的文章,将从独特而全面的角度探索网络安全世界,结合安全双方:红队和蓝队。 这种方法通常称为“紫队”,集成了进攻和防御技术,以提供对威胁和安全解决方案的全面了解。 在本系列的第一篇文章中,我们将指导您完成以 100 欧元约800元左右的预算创建…

Flutter【组件】标签

简介 flutter 标签组件。标签组件是一种常见的 UI 元素&#xff0c;用于显示和管理多个标签&#xff08;或标签集合&#xff09;。 github地址&#xff1a; https://github.com/ThinkerJack/jac_uikit pub地址&#xff1a;https://pub.dev/packages/jac_uikit 使用方式&…

liunx清理服务器内存和日志

1、查看服务器磁盘占用情况 # 查看磁盘占用大小 df -h 2、删除data文件夹下面的日志 3、查看每个服务下面的日志输出文件&#xff0c;过大就先停掉服务再删除out文件再重启服务 4、先进入想删除输入日志的服务文件夹下&#xff0c;查看服务进程&#xff0c;杀掉进程&#xff…

使用ssh服务器管理远程主机

前言&#xff1a;本博客仅作记录学习使用&#xff0c;部分图片出自网络&#xff0c;如有侵犯您的权益&#xff0c;请联系删除 目录 一、配置网卡服务 1、配置网卡参数 2、创建网络会话 3、绑定两块网卡 二、远程控制服务 1、配置sshd服务 2、在Windows连接 3、安全密钥…

简易限流实现

需求描述 写一个1秒两个的限流工具类&#xff0c;2r/s 使用semaphore 代码实现-类似令牌桶算法 public class LimitHelper {private int maxLimit;private Semaphore semaphore;private int timeoutSeconds;public LimitHelper(int maxLimit, int timeoutSeconds) {this.max…

ExcelVBA运用Excel的【条件格式】(三)

ExcelVBA运用Excel的【条件格式】&#xff08;三&#xff09;前面知识点回顾1. 访问 FormatConditions 集合 Range.FormatConditions2. 添加条件格式 FormatConditions.Add 方法语法表达式。添加 (类型、 运算符、 Expression1、 Expression2)其中 TextOperator:***&am…

【每日一练】python基础入门实例

""" 幼儿园加法练习题 题数不限 每满100分奖励10个棒棒糖 要求&#xff1a; 1.使用三目运算符与基础运算的对比 2.随机数字相加 3.调用函数 4.循环执行练习题 5.有计算分数 6.有时间停止休眠 """ #导入随机模块 import random #导入时间模块 imp…

windows JDK11 与JDK1.8自动切换,以及切换后失效的问题

1.windows安装不同环境的jdk 2.切换jdk 3.切换失败 原因&#xff1a;这是因为当我们安装并配置好JDK11之后它会自动生成一个环境变量&#xff08;此变量我们看不到&#xff09;&#xff0c;此环境变量优先级较高&#xff0c;导致我们在切换回JDK8后系统会先读取到JDK11生成的…