阿里云通义千问开源两款语音基座模型分别是SenseVoice和CosyVoice

阿里巴巴近期发布了开源语音大模型项目FunAudioLLM,该项目包含了两个核心模型:SenseVoice和CosyVoice。可以精准多语言识别并且进行语音克隆。

SenseVoice:精准多语言识别与情感辨识

SenseVoice主要致力于高精度多语言语音识别、情感辨识和音频事件检测,支持超过50种语言的识别,其效果显著优于现有的Whisper模型,尤其在中文和粤语识别上提升超过50%。该模型不仅能够准确识别语音,还能辨别音乐、掌声、笑声、哭声、咳嗽和喷嚏等常见人机交互事件。多方面的测试显示,SenseVoice在情感辨识能力上也取得了行业领先的成果,能够检测到多种情感表现。

语音识别效果

我们在开源基准数据集(包括 AISHELL-1、AISHELL-2、Wenetspeech、Librispeech和Common Voice)上比较了SenseVoice与Whisper的多语言语音识别性能和推理效率。在中文和粤语识别效果上,SenseVoice-Small模型具有明显的效果优势。

在这里插入图片描述

情感识别效果

由于目前缺乏被广泛使用的情感识别测试指标和方法,我们在多个测试集的多种指标进行测试,并与近年来Benchmark上的多个结果进行了全面的对比。所选取的测试集同时包含中文/英文两种语言以及表演、影视剧、自然对话等多种风格的数据,在不进行目标数据微调的前提下,SenseVoice能够在测试数据上达到和超过目前最佳情感识别模型的效果。

在这里插入图片描述

同时,我们还在测试集上对多个开源情感识别模型进行对比,结果表明,SenseVoice-Large模型可以在几乎所有数据上都达到了最佳效果,而SenseVoice-Small模型同样可以在多数数据集上取得超越其他开源模型的效果。

在这里插入图片描述

事件检测效果

尽管SenseVoice只在语音数据上进行训练,它仍然可以作为事件检测模型进行单独使用。我们在环境音分类ESC-50数据集上与目前业内广泛使用的BEATS与PANN模型的效果进行了对比。SenseVoice模型能够在这些任务上取得较好的效果,但受限于训练数据与训练方式,其事件分类效果专业的事件检测模型相比仍然有一定的差距。

在这里插入图片描述

CosyVoice:自然语音生成的新标杆

CosyVoice则聚焦于自然语音生成,支持多语言、音色和情感控制,涵盖中文、英文、日文、粤语和韩语五种语言的生成。与传统语音生成模型相比,CosyVoice在生成效果上有显著提升。它仅需要3至10秒的原始音频,即可生成模拟音色,包含韵律和情感等细节,甚至能够实现跨语言的语音生成。
此外,CosyVoice还支持通过富文本或自然语言形式,对生成语音的情感和韵律进行细粒度控制,大大提升了生成语音在情感表现力上的细腻程度。

产品优势

  • 高度拟人化:采用阿里通义语音实验室自研的CosyVoice 生成式神经网络语音大模型算法,使生成的语音在语调、韵律、情感表达等方面达到超拟人程度。

  • 多样化音色选择:提供海量优质的音库资源,包括不同性别、年龄、方言以及各种特色声音,满足用户在不同场景下的个性化需求。无论是新闻播报的庄重严肃,还是故事讲述的情感丰富,都能轻松驾驭。

  • 实时高效合成:系统具有出色的响应速度和流式语音合成处理能力,无论是长篇文档还是短句指令,都能实现快速、准确的实时语音合成。

  • 支持富语言声音事件以及多情感的高拟人语音生成,例如笑声、语气词等,以及不同情感表现的高拟人语音生成。

  • 灵活应用广泛:适用于多种应用场景,如智能客服、有声读物、车载导航、教育辅导等,极大地拓宽了语音交互的可能性,提升用户体验的同时,也为企业智能化转型提供了强大支持。

目前两个模型均可在 ModelSpace 和 HuggingFace 上找到并下载。

我在Lab上按照 Github 二者的 README.md运行了。但是发现官方使用 Python 8 且 Pytorch都没用上 Ver 2,所以我直接照着requirements.txt 在默认 Python 10 的 Lab 环境上运行:

SenseVoice

jupyter notebook

!pip install torch torchaudio modelscope huggingface huggingface_hub funasr numpy
from funasr import AutoModelmodel_dir = "iic/SenseVoiceSmall"
input_file = ("https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav"
)model = AutoModel(model=model_dir,vad_model="fsmn-vad",vad_kwargs={"max_single_segment_time": 30000},trust_remote_code=True, device="cuda:0")res = model.generate(input=input_file,cache={},language="zh", # "zn", "en", "yue", "ja", "ko", "nospeech"use_itn=False,batch_size_s=0,
)print(res)

CosyVoice

jupyter notebook

!pip install conformer deepspeed diffusers gdown gradio grpcio grpcio-tools hydra-core HyperPyYAML inflect librosa lightning matplotlib modelscope networkx omegaconf onnxruntime-gpu onnxruntime openai-whisper protobuf pydantic rich soundfile tensorboard torch torchaudio wget!apt-get install sox libsox-dev
import os
os.chdir('/content/CosyVoice')# SDK模型下载
from modelscope import snapshot_download
snapshot_download('iic/CosyVoice-300M', local_dir='pretrained_models/CosyVoice-300M')
snapshot_download('iic/CosyVoice-300M-SFT', local_dir='pretrained_models/CosyVoice-300M-SFT')
snapshot_download('iic/CosyVoice-300M-Instruct', local_dir='pretrained_models/CosyVoice-300M-Instruct')
snapshot_download('iic/CosyVoice-ttsfrd', local_dir='pretrained_models/CosyVoice-ttsfrd')
!export PYTHONPATH=third_party/Matcha-TTS
!pip install matcha-tts
import os
os.chdir('/content/CosyVoice')from cosyvoice.cli.cosyvoice import CosyVoice
from cosyvoice.utils.file_utils import load_wav
import torchaudiocosyvoice = CosyVoice('pretrained_models/CosyVoice-300M-SFT')
# sft usage
print(cosyvoice.list_avaliable_spks())
output = cosyvoice.inference_sft('你好,我是通义生成式语音大模型,请问有什么可以帮您的吗?', '中文女')
torchaudio.save('sft.wav', output['tts_speech'], 22050)cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M')
# zero_shot usage, <|zh|><|en|><|jp|><|yue|><|ko|> for Chinese/English/Japanese/Cantonese/Korean
prompt_speech_16k = load_wav('zero_shot_prompt.wav', 16000)
output = cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', prompt_speech_16k)
torchaudio.save('zero_shot.wav', output['tts_speech'], 22050)
# cross_lingual usage
prompt_speech_16k = load_wav('cross_lingual_prompt.wav', 16000)
output = cosyvoice.inference_cross_lingual('<|en|>And then later on, fully acquiring that company. So keeping management in line, interest in line with the asset that\'s coming into the family is a reason why sometimes we don\'t buy the whole thing.', prompt_speech_16k)
torchaudio.save('cross_lingual.wav', output['tts_speech'], 22050)cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M-Instruct')
# instruct usage, support <laughter></laughter><strong></strong>[laughter][breath]
output = cosyvoice.inference_instruct('在面对挑战时,他展现了非凡的<strong>勇气</strong>与<strong>智慧</strong>。', '中文男', 'Theo \'Crimson\', is a fiery, passionate rebel leader. Fights with fervor for justice, but struggles with impulsiveness.')
torchaudio.save('instruct.wav', output['tts_speech'], 22050)

个人感觉平台更靠向ModelSpace。哎,学不完,根本学不完!

我会定期在CSDN分享我的学习心得,项目经验和行业动态。如果你对某个领域感兴趣,或者想要了解更多技术干货,请关注我的账号,一起成长!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/374092.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

《算法笔记》总结No.6——贪心

一.简单贪心 贪心法是求解一类最优化问题的方法&#xff0c;它总是考虑在当前状态下局部最优(或较优)之后&#xff0c;来使全局的结果达到最优(或较优)的策略。显然&#xff0c;如果采取较优而非最优的策略(最优策略可能不存在或是不易想到)&#xff0c;得到的全局结果也无法是…

webGL可用的14种3D文件格式,但要具体问题具体分析。

hello&#xff0c;我威斯数据&#xff0c;你在网上看到的各种炫酷的3d交互效果&#xff0c;背后都必须有三维文件支撑&#xff0c;就好比你网页的时候&#xff0c;得有设计稿源文件一样。WebGL是一种基于OpenGL ES 2.0标准的3D图形库&#xff0c;可以在网页上实现硬件加速的3D图…

无人机之飞行规划与管理篇

无人机飞行规划与管理是确保无人机安全、高效且符合法规的运行的关键步骤。这一过程包括了对飞行任务的详细安排、航线的设定以及风险的评估和管理。下面简述这一过程的主要环节&#xff1a; 一、飞行目的和任务确定 在规划之初&#xff0c;必须明确无人机的飞行目的&#xf…

ETAS工具导入Com Arxml修改步骤

文章目录 前言Confgen之前的更改Confgen之后的修改CANCanIfComComMEcuM修改CanNmCanSMDCMCanTp生成RTE过程报错修改DEXT-诊断文件修改Extract问题总结前言 通讯协议栈开发一般通过导入DBC实现,ETAS工具本身导入DBC也是生成arxml后执行cfggen,本文介绍直接导入客户提供的arxml…

如何保证Redis缓存和数据库的数据一致性

前言 如果项目业务处于起步阶段&#xff0c;流量非常小&#xff0c;那无论是读请求还是写请求&#xff0c;直接操作数据库即可&#xff0c;这时架构模型是这样的&#xff1a; 但随着业务量的增长&#xff0c;项目业务请求量越来越大&#xff0c;这时如果每次都从数据库中读数据…

链表 OJ(一)

移除链表元素 题目连接&#xff1a; https://leetcode.cn/problems/remove-linked-list-elements/description/ 使用双指针法&#xff0c;开始时&#xff0c;一个指针指向头节点&#xff0c;另一个指针指向头节点的下一个结点&#xff0c;然后开始遍历链表删除结点。 这里要注…

【SGX系列教程】(五)enclave多线程测试,以及EPC内存测试

文章目录 一. 概述二. 原理分析2.1 多线程在Enclave中的实现流程2.2 多线程和EPC内存分配之间的冲突2.3 解决多线程和EPC内存分配冲突的策略 三. 源码分析3.1 代码结构3.2 源码3.2.1 App文件夹3.2.2 Enclave文件夹3.2.3 Makefile 3.3 总结 四.感谢支持 一. 概述 在Intel SGX环境…

HarmonyOS(43) @BuilderParam标签使用指南

BuilderParam BuilderParam使用举例定义模板定义具体实现BuilderParam初始化 demo源码参考资料 BuilderParam 该标签有的作用有点类似于设计模式中的模板模式&#xff0c;类似于指定一个UI占位符&#xff0c;具体的实现交给具体的Builder&#xff0c;顾名思义&#xff0c;可以…

【算法】排序算法介绍 附带C#和Python实现代码

1. 冒泡排序(Bubble Sort) 2. 选择排序(Selection Sort) 3. 插入排序(Insertion Sort) 4. 归并排序(Merge Sort) 5. 快速排序(Quick Sort) 排序算法是计算机科学中的一个基础而重要的部分,用于将一组数据按照一定的顺序排列。下面介绍几种常见的排序算法,…

可控学习综述:信息检索中的方法、应用和挑战

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

YOLOv10改进 | Conv篇 | 利用YOLO-MS的MSBlock轻量化网络结构(既轻量又长点)

一、本文介绍 本文给大家带来的改进机制是利用YOLO-MS提出的一种针对于实时目标检测的MSBlock模块(其其实不能算是Conv但是其应该是一整个模块)&#xff0c;我们将其用于C2f中组合出一种新的结构&#xff0c;来替换我们网络中的模块可以达到一种轻量化的作用&#xff0c;我将其…

【Python基础】代码如何打包成exe可执行文件

本文收录于 《一起学Python趣味编程》专栏&#xff0c;从零基础开始&#xff0c;分享一些Python编程知识&#xff0c;欢迎关注&#xff0c;谢谢&#xff01; 文章目录 一、前言二、安装PyInstaller三、使用PyInstaller打包四、验证打包是否成功五、总结 一、前言 本文介绍如何…

SFUZZ模糊测试平台全新升级,从标准到实践助力车企安全出海

开源网安模糊测试平台SFuzz全新升级&#xff0c;参照各国相关标准要求进行针对性建设&#xff0c;可为智能网联汽车信息安全测试提供更为强大的工具支持。SFuzz向被测系统输入大量随机数据&#xff0c;模拟各种异常情况&#xff0c;可以发现被测系统内潜在的缺陷和漏洞&#xf…

ChatGPT提问获取高质量答案的艺术PDF下载书籍推荐分享

ChatGPT高质量prompt技巧分享pdf&#xff0c; ChatGPT提问获取高质量答案的艺术pdf。本书是一本全面的指南&#xff0c;介绍了各种 Prompt 技术的理解和利用&#xff0c;用于从 ChatGPTmiki sharing中生成高质量的答案。我们将探讨如何使用不同的 Prompt 工程技术来实现不同的目…

C语言——结构体

一、定义和使用结构体 1.1概述 前面我们见过的数据类型&#xff0c;比如int,float,char等是在程序中简单的使用&#xff0c;如果我们要根据自己的需求来建立一些复杂的数据&#xff0c;就需要用到结构体。 例如&#xff0c;一个学生的学号&#xff0c;姓名&#xff0c;性别&am…

Python 利用pandas处理CSV文件(DataFrame的基础用法)

前面介绍过通过Python标准库中的CSV模块处理CSV文件&#xff1a; Python 利用CSV模块处理数据 相比CSV模块&#xff0c;pandas的功能更加强大&#xff0c;本文将简单介绍如何通过pandas来处理CSV文件。 文章目录 一、pandas简介二、用法示例2.1 读取CSV文件2.1.1 read_csv参数…

Python 视频的色彩转换

这篇教学会介绍使用OpenCV 的cvtcolor() 方法&#xff0c;将视频的色彩模型从RGB 转换为灰阶、HLS、HSV...等。 因为程式中的OpenCV 会需要使用镜头或GPU&#xff0c;所以请使用本机环境( 参考&#xff1a;使用Python 虚拟环境) 或使用Anaconda Jupyter 进行实作( 参考&#x…

火柴棒图python绘画

使用Python绘制二项分布的概率质量函数&#xff08;PMF&#xff09; 在这篇博客中&#xff0c;我们将探讨如何使用Python中的scipy库和matplotlib库来绘制二项分布的概率质量函数&#xff08;PMF&#xff09;。二项分布是统计学中常见的离散概率分布&#xff0c;描述了在固定次…

MUNIK解读ISO26262--系统架构

功能安全之系统阶段-系统架构 我们来浅析下功能安全系统阶段重要话题——“系统架构” 目录概览&#xff1a; 系统架构的作用系统架构类型系统架构层级的相关安全机制梳理 1.系统架构的作用 架构的思维包括抽象思维、分层思维、结构化思维和演化思维。通过将复杂系统分解…

OZON生活家居用品爆款新品

OZON生活家居用品爆款新品涵盖了多个方面&#xff0c;这些产品不仅满足了消费者对生活品质的追求&#xff0c;也反映了当前市场的热门趋势。以下是一些在OZON平台上备受关注的生活家居用品爆款新品&#xff1a; OZON生活家居用品爆款新品工具&#xff1a;D。DDqbt。COm/74rD T…