设计模式7-装饰模式

设计模式7-装饰模式

  • 写在前面
  • 动机
  • 模式定义
  • 结构
  • 代码推导
    • 原始代码
    • 解决
      • 问题分析
    • 选择装饰模式的理由
      • 1. 职责分离(Single Responsibility Principle)
      • 2. 动态扩展功能
      • 3. 避免类爆炸
      • 4. 开闭原则(Open/Closed Principle)
      • 5. 更好的组合复用
      • 例子对比
      • 详细说明
        • 1. 基本流接口 `Stream`
        • 2. 文件流实现 `FileStream`
        • 3. 装饰器基类 `StreamDecorator`
        • 4. 加密装饰器 `CryptoStream`
        • 5. 缓冲装饰器 `BufferedStream`
        • 6. 使用示例 `Process`
      • 总结
  • 要点总结

写在前面

单一职责模式:

  • 在软件组件的设计中,如果责任划分的不清晰,使用记者得到的结果往往是跟随需求的变化,以及子类的增加而急剧膨胀。同时充值的重复代码。这个时候就应该责任划分清楚。使每个类负责自己的责任模块。这才是单一职责模式的关键。

  • 典型模式:装饰模式(decorator model),桥模式(Bridge model)

动机

  • 在某些情况下,我们可能会过多的使用技巧来扩展对象的功能。由于继承为类型引入的静态特质,使得这种扩展方式缺乏灵活性。随着子类的增多,也就是扩展功能增多。各种子类的组合(扩展功能组合)。

  • 那么如何使对象功能的扩展能够根据需要来动态的实现?而且同时避免扩展功能增多带来的子类膨胀问题。从而使得任何功能扩展变化所导致的影响降为最低。这就是装饰模式的目的。

模式定义

动态组合的给一个对象增加一些额外的职责,就增加工人而言,装饰模式比生成子类更加灵活。也就是消除重复代码以及减少子类个数。

结构

在这里插入图片描述

代码推导

原始代码

//业务操作
class Stream{
publicvirtual char Read(int number)=0;virtual void Seek(int position)=0;virtual void Write(char data)=0;virtual ~Stream(){}
};//主体类
class FileStream: public Stream{
public:virtual char Read(int number){//读文件流}virtual void Seek(int position){//定位文件流}virtual void Write(char data){//写文件流}};class NetworkStream :public Stream{
public:virtual char Read(int number){//读网络流}virtual void Seek(int position){//定位网络流}virtual void Write(char data){//写网络流}};class MemoryStream :public Stream{
public:virtual char Read(int number){//读内存流}virtual void Seek(int position){//定位内存流}virtual void Write(char data){//写内存流}};//扩展操作
class CryptoFileStream :public FileStream{
public:virtual char Read(int number){//额外的加密操作...FileStream::Read(number);//读文件流}virtual void Seek(int position){//额外的加密操作...FileStream::Seek(position);//定位文件流//额外的加密操作...}virtual void Write(byte data){//额外的加密操作...FileStream::Write(data);//写文件流//额外的加密操作...}
};class CryptoNetworkStream : :public NetworkStream{
public:virtual char Read(int number){//额外的加密操作...NetworkStream::Read(number);//读网络流}virtual void Seek(int position){//额外的加密操作...NetworkStream::Seek(position);//定位网络流//额外的加密操作...}virtual void Write(byte data){//额外的加密操作...NetworkStream::Write(data);//写网络流//额外的加密操作...}
};class CryptoMemoryStream : public MemoryStream{
public:virtual char Read(int number){//额外的加密操作...MemoryStream::Read(number);//读内存流}virtual void Seek(int position){//额外的加密操作...MemoryStream::Seek(position);//定位内存流//额外的加密操作...}virtual void Write(byte data){//额外的加密操作...MemoryStream::Write(data);//写内存流//额外的加密操作...}
};class BufferedFileStream : public FileStream{//...
};class BufferedNetworkStream : public NetworkStream{//...
};class BufferedMemoryStream : public MemoryStream{//...
}class CryptoBufferedFileStream :public FileStream{
public:virtual char Read(int number){//额外的加密操作...//额外的缓冲操作...FileStream::Read(number);//读文件流}virtual void Seek(int position){//额外的加密操作...//额外的缓冲操作...FileStream::Seek(position);//定位文件流//额外的加密操作...//额外的缓冲操作...}virtual void Write(byte data){//额外的加密操作...//额外的缓冲操作...FileStream::Write(data);//写文件流//额外的加密操作...//额外的缓冲操作...}
};void Process(){//编译时装配CryptoFileStream *fs1 = new CryptoFileStream();BufferedFileStream *fs2 = new BufferedFileStream();CryptoBufferedFileStream *fs3 =new CryptoBufferedFileStream();}

这段代码存在几个缺陷。主要包括类的继承结构复杂,重复代码多,扩展性差等问题。

缺陷分析:

在这里插入图片描述
从上述图像可以看出,按照继承模式去写子类。那么子类的数量将会是1个抽象stream类 ,n(此时n=3)个基础子类,n*m个扩展子类,子类与子类间功能还会交叉。

1.类结构复杂。

  • 类继承关系较为复杂,多个类之间存在多重继承(如CryptoFileStream和BufferedFileStream),且同一类的不同变种都要各自继承主类(FileStream)。
  • 这种设计导致继承树较为复杂,难以维护和扩展。

2.重复代码多

  • CryptoFileStream、CryptoNetworkStream、CryptoMemoryStream中的加密操作代码几乎相同。
  • BufferedFileStream、BufferedNetworkStream、BufferedMemoryStream中的缓冲操作代码也基本一致。

3.扩展性差

  • 如果需要增加新的功能,如压缩操作,需要再新增大量类似的类(如CryptoBufferedCompressedFileStream等),导致类的数量急剧增加,扩展性极差。

解决

那么按照继承的逻辑将加密功能以虚函数的形式写入到基类中,有需要重写加密函数不就行了?

将加密功能作为虚函数写入基类的确是一种方式,但是这种方法会有一些缺点,特别是在职责分离和代码扩展性方面。

问题分析

1. 职责不单一:

  • 如果将加密功能直接写入基类,那么基类需要承担多种职责:基本流操作(读、写、定位)和加密操作。这违反了单一职责原则(SRP),即一个类应该只有一个引起其变化的原因。

2. 代码复杂度增加:

  • 基类中加入加密相关的虚函数后,所有子类都需要考虑加密操作,即使某些子类并不需要加密功能。这会增加代码的复杂度。

3. 扩展性差:

  • 如果未来需要添加新的功能(例如压缩、日志记录等),那么基类将会变得越来越臃肿,不同子类需要覆盖不同的虚函数,扩展性差。

选择装饰模式的理由

选择装饰器模式的理由主要有以下几点:

1. 职责分离(Single Responsibility Principle)

装饰器模式允许将不同的功能(如加密、缓冲)分离到不同的类中,从而使每个类只负责一种职责。这符合单一职责原则(Single Responsibility Principle),使代码更易于理解、维护和扩展。

2. 动态扩展功能

装饰器模式可以在运行时动态地组合对象,添加或移除功能,而不需要修改对象本身。这提供了比继承更灵活的功能扩展方式。例如,可以动态地对一个流对象添加加密功能、缓冲功能,甚至多个功能的组合。

3. 避免类爆炸

如果通过继承来实现功能扩展,每种功能组合都需要一个新的子类,类的数量会迅速增加,导致类爆炸问题。装饰器模式通过将功能封装在独立的装饰器类中,避免了大量的子类定义。

4. 开闭原则(Open/Closed Principle)

装饰器模式使类对扩展开放,对修改关闭。可以通过添加新的装饰器类来扩展功能,而无需修改已有的类。这符合开闭原则,提高了代码的可扩展性和灵活性。

5. 更好的组合复用

装饰器模式允许通过不同的装饰器类进行自由组合,复用功能模块。例如,可以同时添加加密和缓冲功能,而无需创建一个专门的“加密缓冲流”类。

例子对比

继承方式的缺点

class Stream {
public:virtual char Read(int number) = 0;virtual void Seek(int position) = 0;virtual void Write(char data) = 0;virtual ~Stream() {}
};class FileStream : public Stream {
public:virtual char Read(int number) {// 读文件流}virtual void Seek(int position) {// 定位文件流}virtual void Write(char data) {// 写文件流}
};// 如果需要加密和缓冲功能,需要创建多个类
class CryptoFileStream : public FileStream {// 实现加密功能
};class BufferedFileStream : public FileStream {// 实现缓冲功能
};class CryptoBufferedFileStream : public FileStream {// 实现加密和缓冲功能
};

装饰器模式的优点

class Stream {
public:virtual char Read(int number) = 0;virtual void Seek(int position) = 0;virtual void Write(char data) = 0;virtual ~Stream() {}
};class FileStream : public Stream {
public:virtual char Read(int number) {// 读文件流}virtual void Seek(int position) {// 定位文件流}virtual void Write(char data) {// 写文件流}
};// 装饰器基类
class StreamDecorator : public Stream {
protected:Stream* stream;
public:StreamDecorator(Stream* strm) : stream(strm) {}virtual char Read(int number) {return stream->Read(number);}virtual void Seek(int position) {stream->Seek(position);}virtual void Write(char data) {stream->Write(data);}
};// 加密装饰器
class CryptoStream : public StreamDecorator {
public:CryptoStream(Stream* strm) : StreamDecorator(strm) {}virtual char Read(int number) {// 额外的加密操作...return StreamDecorator::Read(number);}virtual void Seek(int position) {// 额外的加密操作...StreamDecorator::Seek(position);// 额外的加密操作...}virtual void Write(char data) {// 额外的加密操作...StreamDecorator::Write(data);// 额外的加密操作...}
};// 缓冲装饰器
class BufferedStream : public StreamDecorator {
public:BufferedStream(Stream* strm) : StreamDecorator(strm) {}virtual char Read(int number) {// 额外的缓冲操作...return StreamDecorator::Read(number);}virtual void Seek(int position) {// 额外的缓冲操作...StreamDecorator::Seek(position);// 额外的缓冲操作...}virtual void Write(char data) {// 额外的缓冲操作...StreamDecorator::Write(data);// 额外的缓冲操作...}
};// 使用示例
void Process() {Stream* fileStream = new FileStream();Stream* cryptoStream = new CryptoStream(fileStream);Stream* bufferedCryptoStream = new BufferedStream(cryptoStream);bufferedCryptoStream->Read(100);bufferedCryptoStream->Write('A');bufferedCryptoStream->Seek(10);delete bufferedCryptoStream; // 注意:需要确保正确删除链上的所有装饰器delete cryptoStream;delete fileStream;
}

详细说明

这段代码演示了如何使用装饰器模式来动态地为基本的文件流添加加密和缓冲功能。以下是代码的详细说明:

1. 基本流接口 Stream

Stream 是一个抽象基类,定义了三个纯虚函数:ReadSeekWrite。所有具体的流类都必须实现这些函数。

class Stream {
public:virtual char Read(int number) = 0;virtual void Seek(int position) = 0;virtual void Write(char data) = 0;virtual ~Stream() {}
};
2. 文件流实现 FileStream

FileStream 是一个具体的流类,继承自 Stream 并实现了 ReadSeekWrite 方法。具体的实现细节在代码中没有给出,但假设它们涉及对文件的读写操作。

class FileStream : public Stream {
public:virtual char Read(int number) {// 读文件流}virtual void Seek(int position) {// 定位文件流}virtual void Write(char data) {// 写文件流}
};
3. 装饰器基类 StreamDecorator

StreamDecorator 继承自 Stream,并持有一个指向 Stream 对象的指针 streamStreamDecorator 通过调用 stream 指针的相应方法实现 ReadSeekWrite,从而将所有操作委托给被装饰的流对象。

class StreamDecorator : public Stream {
protected:Stream* stream;
public:StreamDecorator(Stream* strm) : stream(strm) {}virtual char Read(int number) {return stream->Read(number);}virtual void Seek(int position) {stream->Seek(position);}virtual void Write(char data) {stream->Write(data);}
};
4. 加密装饰器 CryptoStream

CryptoStream 继承自 StreamDecorator,并在调用 StreamDecoratorReadSeekWrite 方法之前或之后添加额外的加密操作。

class CryptoStream : public StreamDecorator {
public:CryptoStream(Stream* strm) : StreamDecorator(strm) {}virtual char Read(int number) {// 额外的加密操作...return StreamDecorator::Read(number);}virtual void Seek(int position) {// 额外的加密操作...StreamDecorator::Seek(position);// 额外的加密操作...}virtual void Write(char data) {// 额外的加密操作...StreamDecorator::Write(data);// 额外的加密操作...}
};
5. 缓冲装饰器 BufferedStream

BufferedStream 继承自 StreamDecorator,并在调用 StreamDecoratorReadSeekWrite 方法之前或之后添加额外的缓冲操作。

class BufferedStream : public StreamDecorator {
public:BufferedStream(Stream* strm) : StreamDecorator(strm) {}virtual char Read(int number) {// 额外的缓冲操作...return StreamDecorator::Read(number);}virtual void Seek(int position) {// 额外的缓冲操作...StreamDecorator::Seek(position);// 额外的缓冲操作...}virtual void Write(char data) {// 额外的缓冲操作...StreamDecorator::Write(data);// 额外的缓冲操作...}
};
6. 使用示例 Process

Process 函数中,首先创建一个 FileStream 对象,然后将其装饰为 CryptoStreamBufferedStream,最终形成一个既具有加密功能又具有缓冲功能的流对象。

void Process() {Stream* fileStream = new FileStream(); // 基本的文件流Stream* cryptoStream = new CryptoStream(fileStream); // 加密装饰Stream* bufferedCryptoStream = new BufferedStream(cryptoStream); // 缓冲装饰bufferedCryptoStream->Read(100); // 读取操作,包含加密和缓冲bufferedCryptoStream->Write('A'); // 写入操作,包含加密和缓冲bufferedCryptoStream->Seek(10); // 定位操作,包含加密和缓冲delete bufferedCryptoStream; // 注意:需要确保正确删除链上的所有装饰器delete cryptoStream;delete fileStream;
}

总结

  • 职责分离:每个装饰器类(如 CryptoStreamBufferedStream)只负责增加一个特定的功能,使得代码更符合单一职责原则。
  • 动态组合:通过层层包装,可以在运行时动态地为基本流对象添加多种功能(如加密和缓冲),提高了代码的灵活性和可扩展性。
  • 代码复用:装饰器类可以复用,避免了为每个功能组合创建大量子类的情况。

在这里插入图片描述

从上图可以看出此时类的结构为1+n+1+m。一个抽象类加上n个基础类,加上一个装饰类。再加上m个功能类。对比于修改之前类的层次。冗余的代码量大大减少同时也减少了子类的数量。

要点总结

  • 通过采用组合而非计件的方法,装饰模式实现了在运行时动态扩展对象功能的能力。而且可以根据需要扩展多功能,避免了使用继承带来的灵活性差和子类衍生问题。
  • 装饰器类在接口上表现为一个组合的继承关系。装饰器类继承了组合类所具有的接口但是在实现上又表现为组合关系。
  • 装饰器模式的目的并非解决多子类衍生的多继承问题。装饰器模式应用的要点在于解决主体内在多个方向上的扩展功能。就是装饰的含义。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/375065.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Vulkan入门系列0- Vulkan与OpenGL的区别

一:概述 Vulkan 是新一代图形和计算API,是由科纳斯组织(Khronos Group)维护的一套跨平台的、开放标准的、现代GPU 的编程接口,它仅仅是规定了一套编程接口,并没有接口的具体实现,实现是由硬件厂商适配实现的,市面上像NVIDIA、AMD和Intel等国际大厂基本提供了完整的…

一天20MW!天途推出无人机全自主光伏巡检平台

01 光伏电站的运维挑战 光伏发电为人类提供了可持续的清洁能源供给。一般集中式电站建设在空旷的地区,如荒地、沙漠等地区;分布式电站建设在用户的屋顶和建筑物表面,如住宅、商业建筑、工业厂房等地区。 随着光伏电站的大规模的使用&#x…

流程图编辑框架LogicFlow-vue-ts和js

LogicFlow官网https://site.logic-flow.cn/LogicFlow 是一款流程图编辑框架,提供了一系列流程图交互、编辑所必需的功能和灵活的节点自定义、插件等拓展机制。LogicFlow支持前端研发自定义开发各种逻辑编排场景,如流程图、ER图、BPMN流程等。在工作审批配…

WebDriver与浏览器通信的深度剖析与探索

在自动化测试的世界里,WebDriver无疑是连接测试脚本与浏览器之间的桥梁,它让复杂的自动化测试成为可能。本文将深入探讨WebDriver与浏览器之间的通信机制,揭示它们之间如何协同工作,以及这一过程中涉及的关键技术和挑战。 一、We…

Lingo学习(二)——线性规划基础、矩阵工厂

一、线性规划基础 (一)方法 ① 一个线性规划中只含一个目标函数。(两个以上是多目标线性规划,Lingo无法直接解) ② 求目标函数的最大值或最小值分别用max …或min …来表示。 ③ 以!开头,以;结束的语句是注释语句; ④ 线性规划和非线性规划的本质…

分布式应用系统设计:即时消息系统

即时消息(IM)系统,涉及:站内消息系统 组件如下; 客户端: WEB页面,IM桌面客户端。通过WebSocket 跟ChatService后端服务连接 Chat Service: 提供WebSocket接口,并保持跟“客户端”状态的维护。…

独立开发者系列(23)——Linux掌握小结

只要开发系统,就绕不开使用Linux服务器 ,而Linux除了使用BT面板进行初级管理,很多稍微高级点的管理,还是需要命令行进行的。这里总结在不需要精通的情况下,掌握常见命令和环境的相关配置。 (1&#xff09…

MyBatis框架学习笔记(三):MyBatis重要文件详解:配置文件与映射文件

1 mybatis-config.xml-配置文件详解 1.1 说明 (1)mybatis 的核心配置文件(mybatis-config.xml),比如配置 jdbc 连接信息,注册 mapper 等等都是在这个文件中进行配置,我们需要对这个配置文件有详细的了解 (2&#x…

LabVIEW滤波器性能研究

为了研究滤波器的滤波性能,采用LabVIEW设计了一套滤波器性能研究系统。该系统通过LabVIEW中的波形生成函数,输出幅值及频率可调的正弦波和白噪声两种信号,并将白噪声与正弦波叠加,再通过滤波器输出纯净的正弦波信号。系统通过FFT&…

git仓库使用

一、没有仓库 首先要有gitee账号 创建仓库 有了仓库就按已有仓库进行操作 二、已有仓库 先让仓库负责人把自己拉进仓库 成为开发者或者管理员 git clone 仓库地址 开始工作 git add . git commit -m “ 提交说明” git pull 更新一下也叫同步 将线上代码更新到本地 git pu…

Golang | Leetcode Golang题解之第230题二叉搜索树中第K小的元素

题目: 题解: type MyBst struct {root *TreeNodenodeNum map[*TreeNode]int // 统计以每个结点为根结点的子树的结点数,并存储在哈希表中 }// 统计以 node 为根结点的子树的结点数 func (t *MyBst) countNodeNum(node *TreeNode) int {if…

JAVA之Scanner类的使用

一、Scanner类的介绍 java语言中的Scanner类可以实现从键盘输入内容的操作。通常我们使用该类完成一些用户信息的采集,通过java中的变量保存这些信息。 二、Scanner类的使用 1.使用步骤 a)导包:import java.util.Scanner; b)创…

2024年西安铁一中集训DAY1---- 杂题选讲

文章目录 牛客练习赛125 E 联谊活动(枚举,分讨)牛客练习赛125 F 玻璃弹珠(类莫队,离线询问,数据结构)2024ccpc长春邀请赛 D Parallel Lines(随机化)2024ccpc长春邀请赛 E…

昇思25天学习打卡营第14天|基于MindSpore的红酒分类实验

背景介绍 本文主要介绍使用MindSpore在部分wine数据集上进行KNN实验。 K近邻算法原理 K近邻算法(K-Nearest-Neighbor, KNN)是一种用于分类和回归的非参数统计方法,最初由 Cover和Hart于1968年提出(Cover等人,1967),是机器学习最…

了解AsyncRotationController

概述 基于android 15.0, 以从强制横屏App上滑退回桌面流程来分析 frameworks/base/services/core/java/com/android/server/wm/AsyncRotationController.javaAsyncRotationController 是一种控制器,用于处理设备显示屏旋转时非活动窗口的异步更新。这种控制器通过…

国产化框架PaddleClas结合Swanlab进行杂草分类

1. 项目介绍 杂草是农业中的主要问题之一,对作物生长和产量造成严重威胁。传统的手动识别和管理方式效率低下且不够精确,因此需要借助先进的计算机视觉技术来提升农业生产的效率和质量。ResNet作为一种深度学习模型,在处理复杂的图像分类任务…

C++入门基础篇(1)

欢迎大家来到海盗猫鸥的博客—— 断更许久,让我们继续好好学习吧! 目录 1.namespace命名空间 命名空间的存在价值: 命名空间的定义: 命名空间的使用: 2.C输入输出函数 使用: 3.缺省参数 4.函数重载…

可观察性优势:掌握当代编程技术

反馈循环是我们开发人员工作的关键。它们为我们提供信息,并让我们从用户过去和现在的行为中学习。这意味着我们可以根据过去的反应进行主动开发。 TestComplete 是一款自动化UI测试工具,这款工具目前在全球范围内被广泛应用于进行桌面、移动和Web应用的…

Redis+Caffeine 实现两级缓存实战

RedisCaffeine 实现两级缓存 背景 ​ 事情的开始是这样的,前段时间接了个需求,给公司的商城官网提供一个查询预计送达时间的接口。接口很简单,根据请求传的城市仓库发货时间查询快递的预计送达时间。因为商城下单就会调用这个接口&#xff…

【RHCE】系统服务综合实验

一、实验内容 现有主机 node01 和 node02,完成如下需求: 1、在 node01 主机上提供 DNS 和 WEB 服务 2、dns 服务提供本实验所有主机名解析 3、web服务提供 www.rhce.com 虚拟主机 4、该虚拟主机的documentroot目录在 /nfs/rhce 目录 5、该目录由 node02…