【机器学习】使用决策树分类器预测汽车安全性的研究与分析

文章目录

    • 一、决策树算法简介
      • 决策树的结构
      • 分类和回归树 (CART)
      • 决策树算法术语
      • 决策树算法直觉
    • 二、属性选择度量
      • 信息增益
      • 基尼指数
        • 计算分割基尼指数的步骤
    • 三、决策树算法中的过度拟合
      • 避免过度拟合的方法
    • 四、导入库和数据可视化
      • 探索性数据分析
        • 重命名列名
        • 查看数据集的总结信息
        • 变量值的频率分布
    • 五、处理特征向量和目标变量
    • 六、特征工程
      • 编码分类变量
    • 七、使用基尼系数的决策树分类器
      • 比较训练集和测试集的准确性
      • 可视化决策树
    • 八、使用熵的决策树分类器
      • 比较训练集和测试集的准确性
      • 可视化决策树
    • 九、混淆矩阵
    • 十、分类报告
    • 十一、结果和结论

一、决策树算法简介

决策树算法是最流行的机器学习算法之一。它使用树状结构及其可能的组合来解决特定问题。它属于监督学习算法类,可用于分类和回归任务。

决策树的结构

决策树是一种包含根节点、分支和叶节点的结构。每个内部节点表示对属性的测试,每个分支表示测试的结果,每个叶节点都包含一个类标签。树中最顶端的节点是根节点。

在实施决策树算法时,我们做出了一些假设:

  • 整个训练集一开始被视为根。
  • 特征值需要是分类的。如果值是连续的,则在构建模型之前将它们离散化。
  • 记录根据属性值递归分布。
  • 使用某种统计方法将属性放置为树的根或内部节点。

后面的部分将描述决策树的术语。

分类和回归树 (CART)

如今,决策树算法以其现代名称 CART 而闻名,代表分类和回归树。分类和回归树或 CART 是 Leo Breiman 引入的一个术语,指的是可用于分类和回归建模问题的决策树算法。

CART 算法为其他重要算法(如袋装决策树、随机森林和增强决策树)提供了基础。在本文中,我们将解决一个分类问题,因此称该算法为决策树分类问题。

决策树算法术语

在决策树算法中,有一个树状结构,其中每个内部节点代表对属性的测试,每个分支代表测试的结果,每个叶节点代表类标签。从根节点到叶节点的路径代表分类规则。

以下是决策树算法中涉及的一些术语:

根节点:它代表整个总体或样本。这进一步分为两个或多个同质集。

分裂:这是将节点分为两个或多个子节点的过程。

决策节点:当子节点分裂成进一步的子节点时,它被称为决策节点。

叶节点/终端节点:不分裂的节点称为叶节点或终端节点。

修剪:当我们删除决策节点的子节点时,此过程称为修剪。它是分裂的反过程。

分支/子树:整个树的子部分称为分支或子树。

父节点和子节点:分为子节点的节点称为子节点的父节点,子节点是父节点的子节点。

决策树算法直觉

对于数据集中的每个属性,决策树算法形成一个节点。最重要的属性放在根节点。

为了评估手头的任务,我们从根节点开始,然后按照符合条件或决策的相应节点沿着树向下工作。

此过程持续到到达叶节点。叶节点包含决策树的预测或结果。

二、属性选择度量

决策树实施中的主要挑战是确定我们认为是根节点和每个级别的属性。此过程称为属性选择。有不同的属性选择度量来识别可被视为每个级别的根节点的属性。

有两种流行的属性选择度量:信息增益和基尼指数。

信息增益

我们以信息增益为标准,尝试估计每个属性所包含的信息。要理解信息增益的概念,我们需要了解另一个概念,即熵。

熵衡量给定数据集中的杂质。在物理学和数学中,熵是指随机变量 X \mathbf{X} X 的随机性或不确定性。在信息论中,它指的是一组示例中的杂质。信息增益是熵的减少。信息增益根据给定的属性值计算数据集分割前的熵与分割后的平均熵之间的差值。

熵由以下公式表示:
H ( X ) = − ∑ i = 1 c p i log ⁡ 2 ( p i ) \mathbf{H}(\mathbf{X}) = - \sum_{i=1}^{c} \mathbf{p_i} \log_2 (\mathbf{p_i}) H(X)=i=1cpilog2(pi)
其中, c \mathbf{c} c 是类别的数量, p i \mathbf{p_i} pi是与第 i 个类别相关的概率。

ID3(迭代二分法)决策树算法使用熵来计算信息增益。因此,通过计算每个属性的熵度量的减少,我们可以计算它们的信息增益。信息增益最高的属性被选为节点的分割属性。

基尼指数

CART(分类和回归树)使用的另一个属性选择度量是基尼指数。它使用基尼方法创建分割点。

基尼指数可以用下图表示:
G i n i ( X ) = 1 − ∑ i = 1 c p i 2 \mathbf{Gini}(\mathbf{X}) = 1 - \sum_{i=1}^{c} \mathbf{p_i}^2 Gini(X)=1i=1cpi2
其中, c \mathbf{c} c 是类别的数量, p i \mathbf{p_i} pi是与第 i 个类别相关的概率。

基尼指数表示,如果我们从总体中随机选择两个项目,它们必须属于同一类,如果总体是纯的,则概率为 1。

基尼指数适用于分类目标变量“成功”或“失败”。它仅执行二元分割。基尼值越高,同质性越高。CART(分类和回归树)使用基尼方法来创建二元分割。

计算分割基尼指数的步骤
  1. 使用成功和失败概率平方和公式 p 2 + q 2 \mathbf{p}^2 + \mathbf{q}^2 p2+q2计算子节点的基尼指数。
  2. 使用分割的每个节点的加权基尼分数计算分割的基尼指数。
  3. 对于离散值属性,选择具有最小基尼指数的子集作为分割属性。对于连续值属性,策略是选择每对相邻值作为可能的分割点,并选择基尼指数较小的点作为分割点。选择基尼指数最小的属性作为分裂属性。

三、决策树算法中的过度拟合

过度拟合是构建决策树模型时的一个实际问题。当算法继续深入以减少训练集误差但导致测试集误差增加时,就会考虑过度拟合问题。因此,我们模型的预测准确性会下降。这通常发生在我们由于数据中的异常值和不规则性而构建许多分支时。

避免过度拟合的方法

可用于避免过度拟合的两种方法如下:

预修剪:在预修剪中,我们会提前停止树的构建。如果节点的优度测量低于阈值,我们宁愿不拆分节点。但很难选择合适的停止点。

后修剪:在后修剪中,我们深入树的深处以构建完整的树。如果树显示出过度拟合问题,则修剪将作为后修剪步骤进行。我们使用交叉验证数据来检查修剪的效果。使用交叉验证数据,我们测试扩展节点是否会导致改进。如果它显示出改进,那么我们可以继续扩展该节点。但如果它显示准确度降低,则不应扩展它。因此,应将节点转换为叶节点。

四、导入库和数据可视化

在Python环境中导入必要的库以进行数据分析和可视化。

import numpy as np  # 线性代数
import pandas as pd  # 数据处理,CSV文件输入输出(例如 pd.read_csv)
import matplotlib.pyplot as plt  # 数据可视化
import seaborn as sns  # 统计数据可视化
%matplotlib inline

处理警告信息,以保持输出的整洁:

import warnings
warnings.filterwarnings('ignore')

导入数据集

data = './car_evaluation.csv'
df = pd.read_csv(data, header=None)

探索性数据分析

对数据集进行初步探索,以获得数据的基本信息。

查看数据集的维度

df.shape # (1728, 7)

数据集包含1728个实例和7个变量。

查看数据集的前5行

df.head()

输出结果为:

在这里插入图片描述

重命名列名

数据集当前的列名为0, 1, 2等。我们需要为这些列指定有意义的名称:

col_names = ['buying', 'maint', 'doors', 'persons', 'lug_boot', 'safety', 'class']
df.columns = col_names

再次查看数据集的前5行,以确认列名已正确更新:

df.head()

输出结果为:

在这里插入图片描述

查看数据集的总结信息
df.info()

输出结果为:

在这里插入图片描述

变量值的频率分布
for col in col_names:print(df[col].value_counts())

输出结果显示,各个分类变量的频数分布如下:

  • buyingmaint:每个类别(vhigh, high, med, low)都有432个实例。
  • doors:类别为2、3、4和5more,每个类别都有432个实例。
  • persons:类别为2、4和more,每个类别有576个实例。
  • lug_boot:类别为small、med和big,每个类别有576个实例。
  • safety:类别为low、med和high,每个类别有576个实例。
  • class:类别为unacc(1210个实例)、acc(384个实例)、good(69个实例)和vgood(65个实例)。

五、处理特征向量和目标变量

将特征向量X和目标变量y从数据集中分离:

X = df.drop(['class'], axis=1)
y = df['class']

将数据集划分为训练集和测试集

使用train_test_split将特征向量和目标变量划分为训练集和测试集:

from sklearn.model_selection import train_test_splitX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)

查看训练集和测试集的形状:

X_train.shape, X_test.shape # ((1157, 6), (571, 6))

六、特征工程

特征工程是将原始数据转换为有用特征的过程,这些特征有助于我们更好地理解模型并提高其预测能力。我将对不同类型的变量进行特征工程。

首先,我将再次检查变量的数据类型。

# 检查 X_train 中变量的数据类型
X_train.dtypes

在这里插入图片描述

编码分类变量

# 导入类别编码器
import category_encoders as ce# 使用序数编码对变量进行编码
encoder = ce.OrdinalEncoder(cols=['buying', 'maint', 'doors', 'persons', 'lug_boot', 'safety'])
X_train = encoder.fit_transform(X_train)
X_test = encoder.transform(X_test)X_train.head()

在这里插入图片描述

现在已经准备好用于模型构建的训练集和测试集。

七、使用基尼系数的决策树分类器

# 导入 DecisionTreeClassifier
from sklearn.tree import DecisionTreeClassifier# 使用标准基尼系数实例化 DecisionTreeClassifier 模型
clf_gini = DecisionTreeClassifier(criterion='gini', max_depth=3, random_state=0)# 训练模型
clf_gini.fit(X_train, y_train)
# 预测测试集结果
y_pred_gini = clf_gini.predict(X_test)# 检查使用基尼系数的准确性评分
from sklearn.metrics import accuracy_score
print('Model accuracy score with criterion gini index: {0:0.4f}'.format(accuracy_score(y_test, y_pred_gini)))# Model accuracy score with criterion gini index: 0.8021

这里,y_test 是测试集中真实的类别标签, y_pred_gini是预测的类别标签。

比较训练集和测试集的准确性

y_pred_train_gini = clf_gini.predict(X_train)
print('Training-set accuracy score: {0:0.4f}'.format(accuracy_score(y_train, y_pred_train_gini)))# Training-set accuracy score: 0.7865

检查是否存在过拟合或欠拟合

# 打印训练集和测试集的得分
print('Training set score: {:.4f}'.format(clf_gini.score(X_train, y_train)))
print('Test set score: {:.4f}'.format(clf_gini.score(X_test, y_test)))
Training set score: 0.7865
Test set score: 0.8021

这里,训练集准确度得分为 0.7865,而测试集准确度得分为 0.8021。这两个值相当。因此没有过度拟合的迹象。

可视化决策树

plt.figure(figsize=(12,8))
from sklearn import tree
tree.plot_tree(clf_gini.fit(X_train, y_train))

在这里插入图片描述

八、使用熵的决策树分类器

# 使用熵标准实例化 DecisionTreeClassifier 模型
clf_en = DecisionTreeClassifier(criterion='entropy', max_depth=3, random_state=0)# 训练模型
clf_en.fit(X_train, y_train)
# 预测测试集结果
y_pred_en = clf_en.predict(X_test)# 检查使用熵标准的准确性评分
from sklearn.metrics import accuracy_score
print('Model accuracy score with criterion entropy: {0:0.4f}'.format(accuracy_score(y_test, y_pred_en)))# Model accuracy score with criterion entropy: 0.8021

比较训练集和测试集的准确性

y_pred_train_en = clf_en.predict(X_train)
print('Training-set accuracy score: {0:0.4f}'.format(accuracy_score(y_train, y_pred_train_en)))# Training-set accuracy score: 0.7865

检查是否存在过拟合或欠拟合

# 打印训练集和测试集的得分
print('Training set score: {:.4f}'.format(clf_en.score(X_train, y_train)))
print('Test set score: {:.4f}'.format(clf_en.score(X_test, y_test)))
Training set score: 0.7865
Test set score: 0.8021

可以看到,训练集和测试集得分与使用基尼系数的情况相同。训练集准确度得分为 0.7865,而测试集准确度得分为 0.8021。这两个值相当。因此,没有过度拟合的迹象。

可视化决策树

plt.figure(figsize=(12,8))
from sklearn import tree
tree.plot_tree(clf_en.fit(X_train, y_train))

在这里插入图片描述

九、混淆矩阵

混淆矩阵是一种总结分类算法性能的工具。混淆矩阵将为我们清晰地展示分类模型的性能以及模型产生的错误类型。它为我们提供了按每个类别细分的正确和错误预测的摘要。摘要以表格形式表示。

在评估分类模型性能时,可能出现四种类型的结果。这四种结果如下所述:

  • 真阳性 (TP) – 当我们预测观察结果属于某个类别并且观察结果实际上属于该类别时,就会出现真阳性。
  • 真阴性 (TN) – 当我们预测观察结果不属于某个类别并且观察结果实际上不属于该类别时,就会出现真阴性。
  • 假阳性 (FP) – 当我们预测某个观察结果属于某个类别,但该观察结果实际上并不属于该类别时,就会出现假阳性。这种类型的错误称为 I 类错误。
  • 假阴性 (FN) – 当我们预测某个观察结果不属于某个类别,但该观察结果实际上属于该类别时,就会出现假阴性。这是一种非常严重的错误,称为 II 类错误。

下面给出的混淆矩阵总结了这四种结果。

# 打印混淆矩阵并将其分成四部分
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred_en)
print('Confusion matrix\n\n', cm)# [[ 73   0  56   0]# [ 20   0   0   0]# [ 12   0 385   0]# [ 25   0   0   0]]

十、分类报告

分类报告是评估分类模型性能的另一种方法。它显示模型的准确率、召回率、f1 和支持率分数。我们可以按如下方式打印分类报告:

from sklearn.metrics import classification_report
print(classification_report(y_test, y_pred_en))

在这里插入图片描述

我们可以看到,模型的分类报告显示了四个类别(acc、good、unacc、vgood)中每个类别的准确率、召回率、f1-score 和支持率。

在这种情况下,类 “good” 和 “vgood” 的准确率、召回率和 f1-score 都为 0。这意味着模型无法正确预测这些类别。这可能是由于类别样本不均衡导致的。类 “unacc” 的准确率和召回率都很高,表明模型在预测这个类别时表现得相对较好。

十一、结果和结论

在这个项目中,我建立了一个决策树分类器模型来预测汽车的安全性。模型分为两种:一种使用标准“基尼指数”,另一种使用标准“熵”。两种模型的性能都非常出色,准确率均为 0.8021。

标准“基尼指数”模型

在使用“基尼指数”标准的模型中,训练集的准确率得分为 0.7865,而测试集的准确率得分为 0.8021。这两个值相当接近,没有过度拟合的迹象。

标准“熵”模型

类似地,在使用“熵”标准的模型中,训练集的准确度得分为 0.7865,而测试集的准确度得分为 0.8021。这与使用“基尼指数”标准的模型结果相同,因此也没有过度拟合的迹象。

数据集大小的影响

在这两种情况下,训练集和测试集的准确度得分相同,这可能是由于数据集较小导致的结果。

混淆矩阵和分类报告

模型的混淆矩阵和分类报告显示了非常好的性能。以下是模型的混淆矩阵:

 # [[ 73   0  56   0]# [ 20   0   0   0]# [ 12   0 385   0]# [ 25   0   0   0]]

从混淆矩阵中可以看到:

  • 对于类别 a c c \mathbf{acc} acc,模型正确预测了 73 个样本,但有 56 个样本被错误预测为 u n a c c \mathbf{unacc} unacc
  • 对于类别 g o o d \mathbf{good} good,没有样本被正确预测,所有样本被错误预测为其他类别。
  • 对于类别 u n a c c \mathbf{unacc} unacc,模型正确预测了 385 个样本,但有 12 个样本被错误预测为 a c c \mathbf{acc} acc
  • 对于类别 v g o o d \mathbf{vgood} vgood,没有样本被正确预测,所有样本被错误预测为 a c c \mathbf{acc} acc

这些结果表明模型在预测某些类别时有较高的准确性,但在某些类别上有改进空间。

总结

总体而言,本项目中的决策树分类器在使用“基尼指数”和“熵”标准时均表现出了良好的性能。尽管数据集较小可能影响了模型的泛化能力,但模型的准确率和混淆矩阵表明其具有较好的分类能力。未来的工作可以考虑扩大数据集规模,以进一步提升模型的性能和泛化能力。


参考:Decision-Tree Classifier Tutorial
中文版代码放在我的github,欢迎follow


在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/376076.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

我的AI音乐梦:ChatGPT帮我做专辑

​🌈个人主页:前端青山 🔥系列专栏:AI篇 🔖人终将被年少不可得之物困其一生 依旧青山,本期给大家带来ChatGPT帮我做音乐专辑 嘿,朋友们! 想象一下,如果有个超级聪明的机器人能帮你写…

Linux Mac 安装Higress 平替 Spring Cloud Gateway

Linux Mac 安装Higress 平替 Spring Cloud Gateway Higress是什么?传统网关分类Higress定位下载安装包执行安装命令执行脚本 安装成功打开管理界面使用方法configure.shreset.shstartup.shshutdown.shstatus.shlogs.sh Higress官网 Higress是什么? Higress是基于阿里内部的…

java LogUtil输出日志打日志的class文件内具体方法和行号

最近琢磨怎么把日志打的更清晰,方便查找问题,又不需要在每个class内都创建Logger对象,还带上不同的颜色做区分,简直不要太爽。利用堆栈的方向顺序拿到日志的class问题。看效果,直接上代码。 1、demo test 2、输出效果…

将vue项目整合到springboot项目中并在阿里云上运行

第一步&#xff0c;使用springboot中的thymeleaf模板引擎 导入依赖 <!-- thymeleaf 模板 --><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-thymeleaf</artifactId></dependency> 在r…

Golang:数据科学领域中的高性能并发编程新星

文章目录 📖 介绍 📖🏡 演示环境 🏡📒 文章内容 📒📝 并发性能的卓越表现📝 系统级工具的便捷性📝 语言设计的简洁性📝 强类型系统的严格性📝 版本兼容性的稳定性📝 内置工具的全面性⚓️ 相关链接 ⚓️📖 介绍 📖 在数据科学和机器学习的广阔天地…

力扣-回溯法

何为回溯法&#xff1f; 在搜索到某一节点的时候&#xff0c;如果我们发现目前的节点&#xff08;及其子节点&#xff09;并不是需求目标时&#xff0c;我们回退到原来的节点继续搜索&#xff0c;并且把在目前节点修改的状态还原。 记住两个小诀窍&#xff0c;一是按引用传状态…

什么是面向对象编程

什么是面向对象编程&#xff1f;&#xff08;OOP&#xff09; ● 面向对象编程是一种基于对象概念的编程范式&#xff1b;&#xff08;所谓的编程范式&#xff0c;就是代码风格&#xff0c;我们“如何”编写和组织代码&#xff09;&#xff1b; ● 我们使用对象来模拟&#xf…

[C++] STL :stackqueue详解 及 模拟实现

标题&#xff1a;[C] STL &#xff1a;stack&&queue详解 水墨不写bug 目录 &#xff08;一&#xff09;stack简介 &#xff08;二&#xff09;queue简介 &#xff08;三&#xff09;容器适配器 &#xff08;四&#xff09;stack和queue的模拟实现 /*** …

LabVIEW从测试曲线中提取特征值

在LabVIEW中开发用于从测试曲线中提取特征值的功能时&#xff0c;可以考虑以下几点&#xff1a; 数据采集与处理&#xff1a; 确保你能够有效地采集和处理测试曲线数据。这可能涉及使用DAQ模块或其他数据采集设备来获取曲线数据&#xff0c;并在LabVIEW中进行处理和分析。 特…

lvs集群、NAT模式和DR模式、keepalive

目录 lvs集群概念 集群的类型&#xff1a;三种类型 系统可靠性指标 lvs集群中的术语 lvs的工作方式 NAT模式 lvs的工具 算法 实验 数据流向 步骤 一 、调度器配置&#xff08;test1 192.168.233.10&#xff09; 二、RS配置&#xff08;nginx1和nginx2&#xff09;…

Python那些优质可视化工具!

作者&#xff1a;Lty美丽人生 https://blog.csdn.net/weixin_44208569 本次分享10个适用于多个学科的Python数据可视化库&#xff0c;其中有名气很大的也有鲜为人知的&#xff01; 1、matplotlib 两个直方图 matplotlib 是Python可视化程序库的泰斗。经过十几年它任然是Pytho…

王牌站士Ⅴ--mysql9.0发布向量类型糊弄了事

前言 MySQL在本月发布了9.0大版本&#xff0c;作为一个老用户&#xff0c;忍不住关注了一下&#xff0c;简单说下这次大版本更新。 2023年&#xff0c;AI爆火&#xff0c;带动了向量数据库赛道。当下几乎所有主流 DBMS 都已经提供向量数据类型支持 —— MySQL 除外。 大家原…

【vue教程】二. Vue特性原理详解

目录 回顾本章涵盖知识点Vue 实例和选项创建 Vue 实例Vue 实例的选项 Vue 模板语法插值表达式指令v-bindv-modelv-on 自定义指令创建自定义指令在模板中使用自定义指令自定义指令的钩子函数自定义指令的实例演示 指令注册局部注册指令过滤器 数据绑定和响应式原理响应式数据绑定…

【CUDA|CUDNN】安装

every blog every motto: You can do more than you think. https://blog.csdn.net/weixin_39190382?typeblog 0. 前言 显卡驱动安装参考之前的文章 cuda、cudnn 安装 1. cuda 安装 访问https://developer.nvidia.com/cuda-toolkit-archive 选择需要的版本&#xff1a;h…

css实现渐进中嵌套渐进的方法

这是我们想要的实现效果&#xff1a; 思路&#xff1a; 1.有一个底色的背景渐变 2.需要几个小的块级元素做绝对定位通过渐变filter模糊来实现 注意&#xff1a;这里的采用的定位方法&#xff0c;所以在内部的元素一律要使用绝对定位&#xff0c;否则会出现层级的问题&…

面试经验之谈

优质博文&#xff1a;IT-BLOG-CN ​通常面试官会把每一轮面试分为三个环节&#xff1a;① 行为面试 ② 技术面试 ③ 应聘者提问 行为面试环节 面试开始的5~10分钟通常是行为面试的时间&#xff0c;面试官会参照简历和你的自我介绍了解应聘者的过往经验和项目经历。由于面试官…

Hangfire发布托管到iis无法正常执行任务

本文以windowsServer2012R2iis8示例。 当我们设置了一个后台周期性任务后发布到iis&#xff0c;如果出现网站间隔时间较长没有用户去访问&#xff0c;这是iis可能就会自动回收导致Hangfire服务停止&#xff0c;导致我们的后台任务终止执行&#xff0c;直到进来一个请求&#xf…

基于全国产复旦微JFM7K325T+ARM人工智能数据处理平台

复旦微可以配合的ARM平台有&#xff1a;RK3588/TI AM62X/ NXP IMX.8P/飞腾FT2000等。 产品概述 基于PCIE总线架构的高性能数据预处理FMC载板&#xff0c;板卡采用复旦微的JFM7K325T FPGA作为实时处理器&#xff0c;实现各个接口之间的互联。该板卡可以实现100%国产化。 板卡具…

window下tqdm进度条

原代码是linux下运行&#xff0c;修改后可在window下运行。 #ifndef TQDM_H #define TQDM_H#include <chrono> #include <ctime> #include <numeric> #include <ios> #include <string> #include <cstdlib> #include <iostream> #i…

系统吃swap问题排查

目录 背景 问题 分析并解决 1.控制线程数 2.更换IO组件 3.Linux进程信息文件分析 总结加餐 参考文档 背景 隔壁业务组系统是简单的主从结构&#xff0c;写索引的服务(主)叫primary&#xff0c; 读索引并提供搜索功能的服务(从)叫replica。业务线同步数据并不是平滑的&…