科普文:详解23种设计模式

概叙

设计模式是对大家实际工作中写的各种代码进行高层次抽象的总结,其中最出名的当属 Gang of Four(GoF)的分类了,他们将设计模式分类为 23 种经典的模式,根据用途我们又可以分为三大类,分别为创建型模式、结构型模式和行为型模式。

什么是 GOF(四人帮,全拼 Gang of Four)?

在 1994 年,由 Erich Gamma、Richard Helm、Ralph Johnson 和 John Vlissides 四人合著出版了一本名为 Design Patterns - Elements of Reusable Object-Oriented Software(中文译名:设计模式 - 可复用的面向对象软件元素) 的书,该书首次提到了软件开发中设计模式的概念。

四位作者合称 GOF(四人帮,全拼 Gang of Four)。他们所提出的设计模式主要是基于以下的面向对象设计原则。

  • 对接口编程而不是对实现编程。
  • 优先使用对象组合而不是继承。

设计模式(Design Pattern)是前辈们经过相当长的一段时间的试验和错误总结出来的,是软件开发过程中面临的通用问题的解决方案。这些解决方案使用设计模式是为了可重用代码、让代码更容易被他人理解、保证代码可靠性。

有一些重要的设计原则在开篇和大家分享下,这些原则将贯通全文:

  • 面向接口编程,而不是面向实现。这个很重要,也是优雅的、可扩展的代码的第一步,这就不需要多说了吧。

  • 职责单一原则。每个类都应该只有一个单一的功能,并且该功能应该由这个类完全封装起来。

  • 对修改关闭,对扩展开放。对修改关闭是说,我们辛辛苦苦加班写出来的代码,该实现的功能和该修复的 bug 都完成了,别人可不能说改就改;对扩展开放就比较好理解了,也就是说在我们写好的代码基础上,很容易实现扩展。

设计模式的分类

(1)根据其目的

        即模式是用来做什么的,可分为创建型(Creational),结构型(Structural)和行为型(Behavioral)三种:

  • ①创建型模式主要用于创建对象。
  • ②结构型模式主要用于处理类或对象的组合。
  • ③行为型模式主要用于描述对类或对象怎样交互和怎样分配职责。

(2) 根据范围

即模式主要是用于处理类之间关系还是处理对象之间的关系,可分为类模式和对象模式两种:类模式处理类和子类之间的关系,这些关系通过继承建立,在编译时刻就被确定下来,是属于静态的。对象模式处理对象间的关系,这些关系在运行时刻变化,更具动态性。

设计模式的优点

  • ①可以提高程序员的思维能力、编程能力和设计能力。
  • ②使程序设计更加标准化、代码编制更加工程化,使软件开发效率大大提高,从而缩短软件的开发周期。
  • ③使设计的代码可重用性高、可读性强、可靠性高、灵活性好、可维护性强。

现在这样说肯定有些懵逼,需要在实际开发中才能体会得到真正的好处

设计模式的六大原则

1、开闭原则(Open Close Principle)

开闭原则的意思是:对扩展开放,对修改关闭。在程序需要进行拓展的时候,不能去修改原有的代码,实现一个热插拔的效果。简言之,是为了使程序的扩展性好,易于维护和升级。想要达到这样的效果,我们需要使用接口和抽象类,后面的具体设计中我们会提到这点。

2、里氏代换原则(Liskov Substitution Principle)

里氏代换原则是面向对象设计的基本原则之一。 里氏代换原则中说,任何基类可以出现的地方,子类一定可以出现。LSP 是继承复用的基石,只有当派生类可以替换掉基类,且软件单位的功能不受到影响时,基类才能真正被复用,而派生类也能够在基类的基础上增加新的行为。里氏代换原则是对开闭原则的补充。实现开闭原则的关键步骤就是抽象化,而基类与子类的继承关系就是抽象化的具体实现,所以里氏代换原则是对实现抽象化的具体步骤的规范。

3、依赖倒转原则(Dependence Inversion Principle)

这个原则是开闭原则的基础,具体内容:针对接口编程,依赖于抽象而不依赖于具体。

4、接口隔离原则(Interface Segregation Principle)

这个原则的意思是:使用多个隔离的接口,比使用单个接口要好。它还有另外一个意思是:降低类之间的耦合度。由此可见,其实设计模式就是从大型软件架构出发、便于升级和维护的软件设计思想,它强调降低依赖,降低耦合。

5、迪米特法则,又称最少知道原则(Demeter Principle)

最少知道原则是指:一个实体应当尽量少地与其他实体之间发生相互作用,使得系统功能模块相对独立。

6、合成复用原则(Composite Reuse Principle)

合成复用原则是指:尽量使用合成/聚合的方式,而不是使用继承。

设计模式中关键点

(1)创建型模式

简单工厂:一个工厂类根据传入的参量决定创建出那一种产品类的实例。

工厂方法:定义一个创建对象的接口,让子类决定实例化那个类。

抽象工厂:创建相关或依赖对象的家族,而无需明确指定具体类。

建造者模式:封装一个复杂对象的构建过程,并可以按步骤构造。

单例模式:某个类只能有一个实例,提供一个全局的访问点。

原型模式:通过复制现有的实例来创建新的实例。

(2)结构型模式

外观模式:对外提供一个统一的方法,来访问子系统中的一群接口。

桥接模式:将抽象部分和它的实现部分分离,使它们都可以独立的变化。

组合模式:将对象组合成树形结构以表示“”部分-整体“”的层次结构。

装饰模式:动态的给对象添加新的功能。

代理模式:为其他对象提供一个代理以便控制这个对象的访问。

适配器模式:将一个类的方法接口转换成客户希望的另外一个接口。

亨元(蝇量)模式:通过共享技术来有效的支持大量细粒度的对象。

(3)行为型模式模板模式

定义一个算法结构,而将一些步骤延迟到子类实现。

解释器模式:给定一个语言,定义它的文法的一种表示,并定义一个解释器。

策略模式:定义一系列算法,把他们封装起来,并且使它们可以相互替换。

状态模式:允许一个对象在其对象内部状态改变时改变它的行为。

观察者模式:对象间的一对多的依赖关系。

备忘录模式:在不破坏封装的前提下,保持对象的内部状态。

中介者模式:用一个中介对象来封装一系列的对象交互。

命令模式:将命令请求封装为一个对象,使得可以用不同的请求来进行参数化。

访问者模式:在不改变数据结构的前提下,增加作用于一组对象元素的新功能。

责任链模式:将请求的发送者和接收者解耦,使的多个对象都有处理这个请求的机会。

迭代器模式:一种遍历访问聚合对象中各个元素的方法,不暴露该对象的内部结构。

1.创建型模式

创建型模式的作用就是创建对象,说到创建一个对象,最熟悉的就是 new 一个对象,然后 set 相关属性。但是,在很多场景下,我们需要给客户端提供更加友好的创建对象的方式,尤其是那种我们定义了类,但是需要提供给其他开发者用的时候。

简单工厂模式(Simple Factory Pattern)

①一句话来说就是,一个工厂类根据传入的参量决定创建出那一种产品类的实例。因为逻辑实现简单,所以称为简单工厂模式,也因为工厂中的方法一般设置为静态,所以也称为静态工厂,它不属于23种模式。

②简单工厂模式专门定义一个工厂类来负责创建其他类的实例,被创建的实例通常都具有共同的父类,在工厂类中,可以根据参数的不同返回不同类的实例。升级版本简单工厂模式,通过反射根据类的全路径名生成对象。

③简单工厂模式就是将这部分创建对象语句分离出来,由工厂类来封装实例化对象的行为,修改时只需要修改类中的操作代码,使用时调用该类不需要考虑实例化对象的行为,使得后期代码维护升级更简单方便,有利于代码的可修改性与可读性。

④但是如果增加新的产品的话,需要修改工厂类的判断逻辑,违背开闭原则。

和名字一样简单,非常简单,直接上代码吧:

public class FoodFactory {public static Food makeFood(String name) {if (name.equals("noodle")) {Food noodle = new LanZhouNoodle();noodle.addSpicy("more");return noodle;} else if (name.equals("chicken")) {Food chicken = new HuangMenChicken();chicken.addCondiment("potato");return chicken;} else {return null;}}
}@Testpublic void test1(){FoodFactory factory = new FoodFactory();Food noodle = factory.makeFood("noodle");System.out.println(noodle);Food chicken = factory.makeFood("chicken");System.out.println(chicken);}

其中,LanZhouNoodle 和 HuangMenChicken 都继承自 Food。

简单地说,简单工厂模式通常就是这样,一个工厂类 XxxFactory,里面有一个静态方法,根据我们不同的参数,返回不同的派生自同一个父类(或实现同一接口)的实例对象。

我们强调职责单一原则,一个类只提供一种功能,FoodFactory 的功能就是只要负责生产各种 Food。

优点:只需要传入一个正确的参数,就可以获取你所需要的对象而无需知道其创建对象的细节

缺点:扩展性差,当增加新的产品需要修改工厂类的判断逻辑,违背开闭原则,如我想要买一碗“热干面”的话,除了新增“热干面”这个产品类,还需要修改工厂中的逻辑。

工厂模式【工厂方法模式(Factory Method Pattern)】

简单工厂模式很简单,如果它能满足我们的需要,我觉得就不要折腾了。之所以需要引入工厂模式,是因为我们往往需要使用两个或两个以上的工厂。

工厂方法模式定义了一个创建对象的接口,但由子类决定实例化哪个类。工厂方法将对象的创建延迟到子类。

工厂模式包含以下几个主要角色:

  • 抽象产品(Abstract Product):定义了产品的共同接口或抽象类。它可以是具体产品类的父类或接口,规定了产品对象的共同方法。
  • 具体产品(Concrete Product):实现了抽象产品接口,定义了具体产品的特定行为和属性。
  • 抽象工厂(Abstract Factory):声明了创建产品的抽象方法,可以是接口或抽象类。它可以有多个方法用于创建不同类型的产品。
  • 具体工厂(Concrete Factory):实现了抽象工厂接口,负责实际创建具体产品的对象。

实现

我们将创建一个 Shape 接口和实现 Shape 接口的实体类。下一步是定义工厂类 ShapeFactory

FactoryPatternDemo 类使用 ShapeFactory 来获取 Shape 对象。它将向 ShapeFactory 传递信息(CIRCLE / RECTANGLE / SQUARE),以便获取它所需对象的类型。

工厂模式的 UML 图

步骤 1
创建一个接口:Shape.java
public interface Shape {void draw();
}
步骤 2
创建实现接口的实体类。Rectangle.java
public class Rectangle implements Shape {@Overridepublic void draw() {System.out.println("Inside Rectangle::draw() method.");}
}
Square.java
public class Square implements Shape {@Overridepublic void draw() {System.out.println("Inside Square::draw() method.");}
}
Circle.java
public class Circle implements Shape {@Overridepublic void draw() {System.out.println("Inside Circle::draw() method.");}
}
步骤 3
创建一个工厂,生成基于给定信息的实体类的对象。ShapeFactory.java
public class ShapeFactory {//使用 getShape 方法获取形状类型的对象public Shape getShape(String shapeType){if(shapeType == null){return null;}        if(shapeType.equalsIgnoreCase("CIRCLE")){return new Circle();} else if(shapeType.equalsIgnoreCase("RECTANGLE")){return new Rectangle();} else if(shapeType.equalsIgnoreCase("SQUARE")){return new Square();}return null;}
}
步骤 4
使用该工厂,通过传递类型信息来获取实体类的对象。FactoryPatternDemo.java
public class FactoryPatternDemo {public static void main(String[] args) {ShapeFactory shapeFactory = new ShapeFactory();//获取 Circle 的对象,并调用它的 draw 方法Shape shape1 = shapeFactory.getShape("CIRCLE");//调用 Circle 的 draw 方法shape1.draw();//获取 Rectangle 的对象,并调用它的 draw 方法Shape shape2 = shapeFactory.getShape("RECTANGLE");//调用 Rectangle 的 draw 方法shape2.draw();//获取 Square 的对象,并调用它的 draw 方法Shape shape3 = shapeFactory.getShape("SQUARE");//调用 Square 的 draw 方法shape3.draw();}
}
步骤 5
执行程序,输出结果:Inside Circle::draw() method.
Inside Rectangle::draw() method.
Inside Square::draw() method.

抽象工厂模式(Abstract Factory Pattern)

抽象工厂模式(Abstract Factory Pattern)是围绕一个超级工厂创建其他工厂。该超级工厂又称为其他工厂的工厂。这种类型的设计模式属于创建型模式,它提供了一种创建对象的最佳方式。

在抽象工厂模式中,接口是负责创建一个相关对象的工厂,不需要显式指定它们的类。每个生成的工厂都能按照工厂模式提供对象。

抽象工厂模式提供了一种创建一系列相关或相互依赖对象的接口,而无需指定具体实现类。通过使用抽象工厂模式,可以将客户端与具体产品的创建过程解耦,使得客户端可以通过工厂接口来创建一族产品。

当涉及到产品族的时候,就需要引入抽象工厂模式了。

意图

提供一个创建一系列相关或相互依赖对象的接口,而无需指定它们的具体类。

主要解决

接口选择的问题。

适用场景

当系统需要创建多个相关或依赖的对象,而不需要指定具体类时。

解决方案

在一个产品族中定义多个产品,由具体工厂实现创建这些产品的方法。

关键代码

在一个工厂中聚合多个同类产品的创建方法。

应用实例

假设有不同类型的衣柜,每个衣柜(具体工厂)只能存放一类衣服(成套的具体产品),如商务装、时尚装等。每套衣服包括具体的上衣和裤子(具体产品)。所有衣柜都是衣柜类(抽象工厂)的具体实现,所有上衣和裤子分别实现上衣接口和裤子接口(抽象产品)。

优点

  1. 确保同一产品族的对象一起工作。
  2. 客户端不需要知道每个对象的具体类,简化了代码。

缺点

扩展产品族非常困难。增加一个新的产品族需要修改抽象工厂和所有具体工厂的代码。

使用场景

  1. QQ 换皮肤时,整套皮肤一起更换。
  2. 创建跨平台应用时,生成不同操作系统的程序。

注意事项

增加新的产品族相对容易,而增加新的产品等级结构比较困难。

结构

抽象工厂模式包含以下几个主要角色:

  • 抽象工厂(Abstract Factory):声明了一组用于创建产品对象的方法,每个方法对应一种产品类型。抽象工厂可以是接口或抽象类。
  • 具体工厂(Concrete Factory):实现了抽象工厂接口,负责创建具体产品对象的实例。
  • 抽象产品(Abstract Product):定义了一组产品对象的共同接口或抽象类,描述了产品对象的公共方法。
  • 具体产品(Concrete Product):实现了抽象产品接口,定义了具体产品的特定行为和属性。

抽象工厂模式通常涉及一族相关的产品,每个具体工厂类负责创建该族中的具体产品。客户端通过使用抽象工厂接口来创建产品对象,而不需要直接使用具体产品的实现类。

实现

我们将创建 Shape 和 Color 接口和实现这些接口的实体类。下一步是创建抽象工厂类 AbstractFactory。接着定义工厂类 ShapeFactory 和 ColorFactory,这两个工厂类都是扩展了 AbstractFactory。然后创建一个工厂创造器/生成器类 FactoryProducer

AbstractFactoryPatternDemo 类使用 FactoryProducer 来获取 AbstractFactory 对象。它将向 AbstractFactory 传递形状信息 ShapeCIRCLE / RECTANGLE / SQUARE),以便获取它所需对象的类型。同时它还向 AbstractFactory 传递颜色信息 ColorRED / GREEN / BLUE),以便获取它所需对象的类型。

抽象工厂模式的 UML 图

步骤 1
为形状创建一个接口。Shape.java
public interface Shape {void draw();
}
步骤 2
创建实现接口的实体类。Rectangle.javaRectangle.java
public class Rectangle implements Shape {@Overridepublic void draw() {System.out.println("Inside Rectangle::draw() method.");}
}
Square.java
public class Square implements Shape {@Overridepublic void draw() {System.out.println("Inside Square::draw() method.");}
}
Circle.java
public class Circle implements Shape {@Overridepublic void draw() {System.out.println("Inside Circle::draw() method.");}
}
步骤 3
为颜色创建一个接口。Color.java
public interface Color {void fill();
}
步骤4
创建实现接口的实体类。Red.java
public class Red implements Color {@Overridepublic void fill() {System.out.println("Inside Red::fill() method.");}
}
Green.java
public class Green implements Color {@Overridepublic void fill() {System.out.println("Inside Green::fill() method.");}
}
Blue.java
public class Blue implements Color {@Overridepublic void fill() {System.out.println("Inside Blue::fill() method.");}
}
步骤 5
为 Color 和 Shape 对象创建抽象类来获取工厂。AbstractFactory.java
public abstract class AbstractFactory {public abstract Color getColor(String color);public abstract Shape getShape(String shape);
}
步骤 6
创建扩展了 AbstractFactory 的工厂类,基于给定的信息生成实体类的对象。ShapeFactory.java
public class ShapeFactory extends AbstractFactory {@Overridepublic Shape getShape(String shapeType){if(shapeType == null){return null;}        if(shapeType.equalsIgnoreCase("CIRCLE")){return new Circle();} else if(shapeType.equalsIgnoreCase("RECTANGLE")){return new Rectangle();} else if(shapeType.equalsIgnoreCase("SQUARE")){return new Square();}return null;}@Overridepublic Color getColor(String color) {return null;}
}
ColorFactory.java
public class ColorFactory extends AbstractFactory {@Overridepublic Shape getShape(String shapeType){return null;}@Overridepublic Color getColor(String color) {if(color == null){return null;}        if(color.equalsIgnoreCase("RED")){return new Red();} else if(color.equalsIgnoreCase("GREEN")){return new Green();} else if(color.equalsIgnoreCase("BLUE")){return new Blue();}return null;}
}
步骤 7
创建一个工厂创造器/生成器类,通过传递形状或颜色信息来获取工厂。FactoryProducer.java
public class FactoryProducer {public static AbstractFactory getFactory(String choice){if(choice.equalsIgnoreCase("SHAPE")){return new ShapeFactory();} else if(choice.equalsIgnoreCase("COLOR")){return new ColorFactory();}return null;}
}
步骤 8
使用 FactoryProducer 来获取 AbstractFactory,通过传递类型信息来获取实体类的对象。AbstractFactoryPatternDemo.java
public class AbstractFactoryPatternDemo {public static void main(String[] args) {//获取形状工厂AbstractFactory shapeFactory = FactoryProducer.getFactory("SHAPE");//获取形状为 Circle 的对象Shape shape1 = shapeFactory.getShape("CIRCLE");//调用 Circle 的 draw 方法shape1.draw();//获取形状为 Rectangle 的对象Shape shape2 = shapeFactory.getShape("RECTANGLE");//调用 Rectangle 的 draw 方法shape2.draw();//获取形状为 Square 的对象Shape shape3 = shapeFactory.getShape("SQUARE");//调用 Square 的 draw 方法shape3.draw();//获取颜色工厂AbstractFactory colorFactory = FactoryProducer.getFactory("COLOR");//获取颜色为 Red 的对象Color color1 = colorFactory.getColor("RED");//调用 Red 的 fill 方法color1.fill();//获取颜色为 Green 的对象Color color2 = colorFactory.getColor("GREEN");//调用 Green 的 fill 方法color2.fill();//获取颜色为 Blue 的对象Color color3 = colorFactory.getColor("BLUE");//调用 Blue 的 fill 方法color3.fill();}
}
步骤 9
执行程序,输出结果:Inside Circle::draw() method.
Inside Rectangle::draw() method.
Inside Square::draw() method.
Inside Red::fill() method.
Inside Green::fill() method.
Inside Blue::fill() method.

单例模式

单例模式(Singleton Pattern)是 Java 中最简单的设计模式之一。这种类型的设计模式属于创建型模式,它提供了一种创建对象的最佳方式。

这种模式涉及到一个单一的类,该类负责创建自己的对象,同时确保只有单个对象被创建。这个类提供了一种访问其唯一的对象的方式,可以直接访问,不需要实例化该类的对象。

单例模式是一种创建型设计模式,它确保一个类只有一个实例,并提供了一个全局访问点来访问该实例。

注意:

  • 1、单例类只能有一个实例。
  • 2、单例类必须自己创建自己的唯一实例。
  • 3、单例类必须给所有其他对象提供这一实例。

注意事项

  • 线程安全getInstance() 方法中需要使用同步锁 synchronized (Singleton.class) 防止多线程同时进入造成实例被多次创建。
  • 延迟初始化:实例在第一次调用 getInstance() 方法时创建。
  • 序列化和反序列化:重写 readResolve 方法以确保反序列化时不会创建新的实例。
  • 反射攻击:在构造函数中添加防护代码,防止通过反射创建新实例。
  • 类加载器问题:注意复杂类加载环境可能导致的多个实例问题。

结构

单例模式包含以下几个主要角色:

  • 单例类:包含单例实例的类,通常将构造函数声明为私有。
  • 静态成员变量:用于存储单例实例的静态成员变量。
  • 获取实例方法:静态方法,用于获取单例实例。
  • 私有构造函数:防止外部直接实例化单例类。
  • 线程安全处理:确保在多线程环境下单例实例的创建是安全的。

实现

我们将创建一个 SingleObject 类。SingleObject 类有它的私有构造函数和本身的一个静态实例。

SingleObject 类提供了一个静态方法,供外界获取它的静态实例。SingletonPatternDemo 类使用 SingleObject 类来获取 SingleObject 对象。

单例模式的 UML 图

步骤 1
创建一个 Singleton 类。SingleObject.java
public class SingleObject {//创建 SingleObject 的一个对象private static SingleObject instance = new SingleObject();//让构造函数为 private,这样该类就不会被实例化private SingleObject(){}//获取唯一可用的对象public static SingleObject getInstance(){return instance;}public void showMessage(){System.out.println("Hello World!");}
}
步骤 2
从 singleton 类获取唯一的对象。SingletonPatternDemo.java
public class SingletonPatternDemo {public static void main(String[] args) {//不合法的构造函数//编译时错误:构造函数 SingleObject() 是不可见的//SingleObject object = new SingleObject();//获取唯一可用的对象SingleObject object = SingleObject.getInstance();//显示消息object.showMessage();}
}
步骤 3
执行程序,输出结果:Hello World!

1、懒汉式,线程不安全

是否 Lazy 初始化:

是否多线程安全:

实现难度:

描述:这种方式是最基本的实现方式,这种实现最大的问题就是不支持多线程。因为没有加锁 synchronized,所以严格意义上它并不算单例模式。
这种方式 lazy loading 很明显,不要求线程安全,在多线程不能正常工作。

实例

public class Singleton {  private static Singleton instance;  private Singleton (){}  public static Singleton getInstance() {  if (instance == null) {  instance = new Singleton();  }  return instance;  }  
}

接下来介绍的几种实现方式都支持多线程,但是在性能上有所差异。

2、懒汉式,线程安全(加锁 synchronized )

是否 Lazy 初始化:

是否多线程安全:

实现难度:

描述:这种方式具备很好的 lazy loading,能够在多线程中很好的工作,但是,效率很低,99% 情况下不需要同步。
优点:第一次调用才初始化,避免内存浪费。
缺点:必须加锁 synchronized 才能保证单例,但加锁会影响效率。
getInstance() 的性能对应用程序不是很关键(该方法使用不太频繁)。

实例

public class Singleton {  private static Singleton instance;  private Singleton (){}  public static synchronized Singleton getInstance() {  if (instance == null) {  instance = new Singleton();  }  return instance;  }  
}

3、饿汉式,线程安全

是否 Lazy 初始化:

是否多线程安全:

实现难度:

描述:这种方式比较常用,但容易产生垃圾对象。
优点:没有加锁,执行效率会提高。
缺点:类加载时就初始化,浪费内存。
它基于 classloader 机制避免了多线程的同步问题,不过,instance 在类装载时就实例化,虽然导致类装载的原因有很多种,在单例模式中大多数都是调用 getInstance 方法, 但是也不能确定有其他的方式(或者其他的静态方法)导致类装载,这时候初始化 instance 显然没有达到 lazy loading 的效果。

实例

public class Singleton {  private static Singleton instance = new Singleton();  private Singleton (){}  public static Singleton getInstance() {  return instance;  }  
}

4、双检锁/双重校验锁(DCL,即 double-checked locking)

JDK 版本:JDK1.5 起

是否 Lazy 初始化:

是否多线程安全:

实现难度:较复杂

描述:这种方式采用双锁机制,安全且在多线程情况下能保持高性能。
getInstance() 的性能对应用程序很关键。

实例

public class Singleton {  private volatile static Singleton singleton;  private Singleton (){}  public static Singleton getSingleton() {  if (singleton == null) {  synchronized (Singleton.class) {  if (singleton == null) {  singleton = new Singleton();  }  }  }  return singleton;  }  
}

5、登记式/静态内部类

是否 Lazy 初始化:

是否多线程安全:

实现难度:一般

描述:这种方式能达到双检锁方式一样的功效,但实现更简单。对静态域使用延迟初始化,应使用这种方式而不是双检锁方式。这种方式只适用于静态域的情况,双检锁方式可在实例域需要延迟初始化时使用。
这种方式同样利用了 classloader 机制来保证初始化 instance 时只有一个线程,它跟第 3 种方式不同的是:第 3 种方式只要 Singleton 类被装载了,那么 instance 就会被实例化(没有达到 lazy loading 效果),而这种方式是 Singleton 类被装载了,instance 不一定被初始化。因为 SingletonHolder 类没有被主动使用,只有通过显式调用 getInstance 方法时,才会显式装载 SingletonHolder 类,从而实例化 instance。想象一下,如果实例化 instance 很消耗资源,所以想让它延迟加载,另外一方面,又不希望在 Singleton 类加载时就实例化,因为不能确保 Singleton 类还可能在其他的地方被主动使用从而被加载,那么这个时候实例化 instance 显然是不合适的。这个时候,这种方式相比第 3 种方式就显得很合理。

实例

public class Singleton {  private static class SingletonHolder {  private static final Singleton INSTANCE = new Singleton();  }  private Singleton (){}  public static final Singleton getInstance() {  return SingletonHolder.INSTANCE;  }  
}

6、枚举

JDK 版本:JDK1.5 起

是否 Lazy 初始化:

是否多线程安全:

实现难度:

描述:这种实现方式还没有被广泛采用,但这是实现单例模式的最佳方法。它更简洁,自动支持序列化机制,绝对防止多次实例化。
这种方式是 Effective Java 作者 Josh Bloch 提倡的方式,它不仅能避免多线程同步问题,而且还自动支持序列化机制,防止反序列化重新创建新的对象,绝对防止多次实例化。不过,由于 JDK1.5 之后才加入 enum 特性,用这种方式写不免让人感觉生疏,在实际工作中,也很少用。
不能通过 reflection attack 来调用私有构造方法。

实例

public enum Singleton {  INSTANCE;  public void whateverMethod() {  }  
}

经验之谈:一般情况下,不建议使用第 1 种和第 2 种懒汉方式,建议使用第 3 种饿汉方式。只有在要明确实现 lazy loading 效果时,才会使用第 5 种登记方式。如果涉及到反序列化创建对象时,可以尝试使用第 6 种枚举方式。如果有其他特殊的需求,可以考虑使用第 4 种双检锁方式。

建造者模式

建造者模式是一种创建型设计模式,它允许你创建复杂对象的步骤与表示方式相分离。

建造者模式是一种创建型设计模式,它的主要目的是将一个复杂对象的构建过程与其表示相分离,从而可以创建具有不同表示形式的对象。

经常碰见的 XxxBuilder 的类,通常都是建造者模式的产物。建造者模式其实有很多的变种,但是对于客户端来说,我们的使用通常都是一个模式的:

核心是:先把所有的属性都设置给 Builder,然后 build() 方法的时候,将这些属性复制给实际产生的对象。

@Builder
class User {
    private String  name;
    private String password;
    private String nickName;
    private int age;
}

注意事项

与工厂模式的区别是:建造者模式更加关注于零件装配的顺序。

结构

建造者模式包含以下几个主要角色:

  • 产品(Product):要构建的复杂对象。产品类通常包含多个部分或属性。

  • 抽象建造者(Builder):定义了构建产品的抽象接口,包括构建产品的各个部分的方法。

  • 具体建造者(Concrete Builder):实现抽象建造者接口,具体确定如何构建产品的各个部分,并负责返回最终构建的产品。

  • 指导者(Director):负责调用建造者的方法来构建产品,指导者并不了解具体的构建过程,只关心产品的构建顺序和方式。

实现

我们假设一个快餐店的商业案例,其中,一个典型的套餐可以是一个汉堡(Burger)和一杯冷饮(Cold drink)。汉堡(Burger)可以是素食汉堡(Veg Burger)或鸡肉汉堡(Chicken Burger),它们是包在纸盒中。冷饮(Cold drink)可以是可口可乐(coke)或百事可乐(pepsi),它们是装在瓶子中。

我们将创建一个表示食物条目(比如汉堡和冷饮)的 Item 接口和实现 Item 接口的实体类,以及一个表示食物包装的 Packing 接口和实现 Packing 接口的实体类,汉堡是包在纸盒中,冷饮是装在瓶子中。

然后我们创建一个 Meal 类,带有 Item 的 ArrayList 和一个通过结合 Item 来创建不同类型的 Meal 对象的 MealBuilderBuilderPatternDemo 类使用 MealBuilder 来创建一个 Meal

步骤 1
创建一个表示食物条目和食物包装的接口。Item.java
public interface Item {public String name();public Packing packing();public float price();    
}
Packing.java
public interface Packing {public String pack();
}
步骤 2
创建实现 Packing 接口的实体类。Wrapper.java
public class Wrapper implements Packing {@Overridepublic String pack() {return "Wrapper";}
}
Bottle.java
public class Bottle implements Packing {@Overridepublic String pack() {return "Bottle";}
}
步骤 3
创建实现 Item 接口的抽象类,该类提供了默认的功能。Burger.java
public abstract class Burger implements Item {@Overridepublic Packing packing() {return new Wrapper();}@Overridepublic abstract float price();
}
ColdDrink.java
public abstract class ColdDrink implements Item {@Overridepublic Packing packing() {return new Bottle();}@Overridepublic abstract float price();
}
步骤 4
创建扩展了 Burger 和 ColdDrink 的实体类。VegBurger.java
public class VegBurger extends Burger {@Overridepublic float price() {return 25.0f;}@Overridepublic String name() {return "Veg Burger";}
}
ChickenBurger.java
public class ChickenBurger extends Burger {@Overridepublic float price() {return 50.5f;}@Overridepublic String name() {return "Chicken Burger";}
}
Coke.java
public class Coke extends ColdDrink {@Overridepublic float price() {return 30.0f;}@Overridepublic String name() {return "Coke";}
}
Pepsi.java
public class Pepsi extends ColdDrink {@Overridepublic float price() {return 35.0f;}@Overridepublic String name() {return "Pepsi";}
}
步骤 5
创建一个 Meal 类,带有上面定义的 Item 对象。Meal.java
import java.util.ArrayList;
import java.util.List;public class Meal {private List<Item> items = new ArrayList<Item>();    public void addItem(Item item){items.add(item);}public float getCost(){float cost = 0.0f;for (Item item : items) {cost += item.price();}        return cost;}public void showItems(){for (Item item : items) {System.out.print("Item : "+item.name());System.out.print(", Packing : "+item.packing().pack());System.out.println(", Price : "+item.price());}        }    
}
步骤 6
创建一个 MealBuilder 类,实际的 builder 类负责创建 Meal 对象。MealBuilder.java
public class MealBuilder {public Meal prepareVegMeal (){Meal meal = new Meal();meal.addItem(new VegBurger());meal.addItem(new Coke());return meal;}   public Meal prepareNonVegMeal (){Meal meal = new Meal();meal.addItem(new ChickenBurger());meal.addItem(new Pepsi());return meal;}
}
步骤 7
BuiderPatternDemo 使用 MealBuilder 来演示建造者模式(Builder Pattern)。BuilderPatternDemo.java
public class BuilderPatternDemo {public static void main(String[] args) {MealBuilder mealBuilder = new MealBuilder();Meal vegMeal = mealBuilder.prepareVegMeal();System.out.println("Veg Meal");vegMeal.showItems();System.out.println("Total Cost: " +vegMeal.getCost());Meal nonVegMeal = mealBuilder.prepareNonVegMeal();System.out.println("\n\nNon-Veg Meal");nonVegMeal.showItems();System.out.println("Total Cost: " +nonVegMeal.getCost());}
}
步骤 8
执行程序,输出结果:Veg Meal
Item : Veg Burger, Packing : Wrapper, Price : 25.0
Item : Coke, Packing : Bottle, Price : 30.0
Total Cost: 55.0Non-Veg Meal
Item : Chicken Burger, Packing : Wrapper, Price : 50.5
Item : Pepsi, Packing : Bottle, Price : 35.0
Total Cost: 85.5

原型模式

原型模式(Prototype Pattern)是用于创建重复的对象,同时又能保证性能。这种类型的设计模式属于创建型模式,它提供了一种创建对象的最佳方式之一。

这种模式是实现了一个原型接口,该接口用于创建当前对象的克隆。当直接创建对象的代价比较大时,则采用这种模式。例如,一个对象需要在一个高代价的数据库操作之后被创建。我们可以缓存该对象,在下一个请求时返回它的克隆,在需要的时候更新数据库,以此来减少数据库调用。

这是我要说的创建型模式的最后一个设计模式了。

原型模式很简单:有一个原型实例,基于这个原型实例产生新的实例,也就是“克隆”了。

Object 类中有一个 clone() 方法,它用于生成一个新的对象,当然,如果我们要调用这个方法,java 要求我们的类必须先实现 Cloneable 接口,此接口没有定义任何方法,但是不这么做的话,在 clone() 的时候,会抛出 CloneNotSupportedException 异常。

protected native Object clone() throws CloneNotSupportedException;

Java 的克隆是浅克隆,碰到对象引用的时候,克隆出来的对象和原对象中的引用将指向同一个对象。通常实现深克隆的方法是将对象进行序列化,然后再进行反序列化。

原型模式了解到这里我觉得就够了,各种变着法子说这种代码或那种代码是原型模式,没什么意义。

我们将创建一个抽象类 Shape 和扩展了 Shape 类的实体类。下一步是定义类 ShapeCache,该类把 shape 对象存储在一个 Hashtable 中,并在请求的时候返回它们的克隆。

PrototypePatternDemo 类使用 ShapeCache 类来获取 Shape 对象。

原型模式的 UML 图

步骤 1
创建一个实现了 Cloneable 接口的抽象类。Shape.java
public abstract class Shape implements Cloneable {private String id;protected String type;abstract void draw();public String getType(){return type;}public String getId() {return id;}public void setId(String id) {this.id = id;}public Object clone() {Object clone = null;try {clone = super.clone();} catch (CloneNotSupportedException e) {e.printStackTrace();}return clone;}
}
步骤 2
创建扩展了上面抽象类的实体类。Rectangle.java
public class Rectangle extends Shape {public Rectangle(){type = "Rectangle";}@Overridepublic void draw() {System.out.println("Inside Rectangle::draw() method.");}
}
Square.java
public class Square extends Shape {public Square(){type = "Square";}@Overridepublic void draw() {System.out.println("Inside Square::draw() method.");}
}
Circle.java
public class Circle extends Shape {public Circle(){type = "Circle";}@Overridepublic void draw() {System.out.println("Inside Circle::draw() method.");}
}
步骤 3
创建一个类,从数据库获取实体类,并把它们存储在一个 Hashtable 中。ShapeCache.java
import java.util.Hashtable;public class ShapeCache {private static Hashtable<String, Shape> shapeMap = new Hashtable<String, Shape>();public static Shape getShape(String shapeId) {Shape cachedShape = shapeMap.get(shapeId);return (Shape) cachedShape.clone();}// 对每种形状都运行数据库查询,并创建该形状// shapeMap.put(shapeKey, shape);// 例如,我们要添加三种形状public static void loadCache() {Circle circle = new Circle();circle.setId("1");shapeMap.put(circle.getId(),circle);Square square = new Square();square.setId("2");shapeMap.put(square.getId(),square);Rectangle rectangle = new Rectangle();rectangle.setId("3");shapeMap.put(rectangle.getId(),rectangle);}
}
步骤 4
PrototypePatternDemo 使用 ShapeCache 类来获取存储在 Hashtable 中的形状的克隆。PrototypePatternDemo.java
public class PrototypePatternDemo {public static void main(String[] args) {ShapeCache.loadCache();Shape clonedShape = (Shape) ShapeCache.getShape("1");System.out.println("Shape : " + clonedShape.getType());        Shape clonedShape2 = (Shape) ShapeCache.getShape("2");System.out.println("Shape : " + clonedShape2.getType());        Shape clonedShape3 = (Shape) ShapeCache.getShape("3");System.out.println("Shape : " + clonedShape3.getType());        }
}
步骤 5
执行程序,输出结果:Shape : Circle
Shape : Square
Shape : Rectangle

创建型模式总结

创建型模式总体上比较简单,它们的作用就是为了产生实例对象,算是各种工作的第一步了,因为我们写的是面向对象的代码,所以我们第一步当然是需要创建一个对象了。

简单工厂模式最简单;工厂模式在简单工厂模式的基础上增加了选择工厂的维度,需要第一步选择合适的工厂;抽象工厂模式有产品族的概念,如果各个产品是存在兼容性问题的,就要用抽象工厂模式。单例模式就不说了,为了保证全局使用的是同一对象,一方面是安全性考虑,一方面是为了节省资源;建造者模式专门对付属性很多的那种类,为了让代码更优美;原型模式用得最少,了解和 Object 类中的 clone() 方法相关的知识即可。

2.结构型模式

前面创建型模式介绍了创建对象的一些设计模式,这节介绍的结构型模式旨在通过改变代码结构来达到解耦的目的,使得我们的代码容易维护和扩展。

代理模式

在代理模式(Proxy Pattern)中,一个类代表另一个类的功能,这种类型的设计模式属于结构型模式。

代理模式通过引入一个代理对象来控制对原对象的访问。代理对象在客户端和目标对象之间充当中介,负责将客户端的请求转发给目标对象,同时可以在转发请求前后进行额外的处理。

在代理模式中,我们创建具有现有对象的对象,以便向外界提供功能接口。

第一个要介绍的代理模式是最常使用的模式之一了,用一个代理来隐藏具体实现类的实现细节,通常还用于在真实的实现的前后添加一部分逻辑。

既然说是代理,那就要对客户端隐藏真实实现,由代理来负责客户端的所有请求。当然,代理只是个代理,它不会完成实际的业务逻辑,而是一层皮而已,但是对于客户端来说,它必须表现得就是客户端需要的真实实现。

理解代理这个词,这个模式其实就简单了。

 

我们将创建一个 Image 接口和实现了 Image 接口的实体类。ProxyImage 是一个代理类,减少 RealImage 对象加载的内存占用。

ProxyPatternDemo 类使用 ProxyImage 来获取要加载的 Image 对象,并按照需求进行显示。

步骤 1
创建一个接口。Image.java
public interface Image {void display();
}
步骤 2
创建实现接口的实体类。RealImage.java
public class RealImage implements Image {private String fileName;public RealImage(String fileName){this.fileName = fileName;loadFromDisk(fileName);}@Overridepublic void display() {System.out.println("Displaying " + fileName);}private void loadFromDisk(String fileName){System.out.println("Loading " + fileName);}
}
ProxyImage.java
public class ProxyImage implements Image{private RealImage realImage;private String fileName;public ProxyImage(String fileName){this.fileName = fileName;}@Overridepublic void display() {if(realImage == null){realImage = new RealImage(fileName);}realImage.display();}
}
步骤 3
当被请求时,使用 ProxyImage 来获取 RealImage 类的对象。ProxyPatternDemo.java
public class ProxyPatternDemo {public static void main(String[] args) {Image image = new ProxyImage("test_10mb.jpg");// 图像将从磁盘加载image.display(); System.out.println("");// 图像不需要从磁盘加载image.display();  }
}
步骤 4
执行程序,输出结果:Loading test_10mb.jpg
Displaying test_10mb.jpgDisplaying test_10mb.jpg

我们发现没有,代理模式说白了就是做 “方法包装” 或做 “方法增强”。在面向切面编程中,其实就是动态代理的过程。比如 Spring 中,我们自己不定义代理类,但是 Spring 会帮我们动态来定义代理,然后把我们定义在 @Before、@After、@Around 中的代码逻辑动态添加到代理中。

说到动态代理,又可以展开说,Spring 中实现动态代理有两种,一种是如果我们的类定义了接口,如 UserService 接口和 UserServiceImpl 实现,那么采用 JDK 的动态代理,感兴趣的读者可以去看看 java.lang.reflect.Proxy 类的源码;另一种是我们自己没有定义接口的,Spring 会采用 CGLIB 进行动态代理,它是一个 jar 包,性能还不错。

适配器模式

适配器模式(Adapter Pattern)充当两个不兼容接口之间的桥梁,属于结构型设计模式。它通过一个中间件(适配器)将一个类的接口转换成客户期望的另一个接口,使原本不能一起工作的类能够协同工作。

这种模式涉及到一个单一的类,该类负责加入独立的或不兼容的接口功能。举个真实的例子,读卡器是作为内存卡和笔记本之间的适配器。您将内存卡插入读卡器,再将读卡器插入笔记本,这样就可以通过笔记本来读取内存卡。

假设有一个音频播放器,它只能播放 MP3 文件。现在,我们需要播放 VLC 和 MP4 文件,可以通过创建一个适配器来实现:

  • 目标接口:定义一个可以播放多种格式文件的音频播放器接口。
  • 适配者类:现有的音频播放器,只能播放 MP3 文件。
  • 适配器类:创建一个新的类,实现目标接口,并在内部使用适配者类来播放 MP3 文件,同时添加对 VLC 和 MP4 文件的支持。

说完代理模式,说适配器模式,是因为它们很相似,这里可以做个比较。

适配器模式做的就是,有一个接口需要实现,但是我们现成的对象都不满足,需要加一层适配器来进行适配。

步骤 1
为媒体播放器和更高级的媒体播放器创建接口。MediaPlayer.java
public interface MediaPlayer {public void play(String audioType, String fileName);
}
AdvancedMediaPlayer.java
public interface AdvancedMediaPlayer { public void playVlc(String fileName);public void playMp4(String fileName);
}
步骤 2
创建实现了 AdvancedMediaPlayer 接口的实体类。VlcPlayer.java
public class VlcPlayer implements AdvancedMediaPlayer{@Overridepublic void playVlc(String fileName) {System.out.println("Playing vlc file. Name: "+ fileName);      }@Overridepublic void playMp4(String fileName) {//什么也不做}
}
Mp4Player.java
public class Mp4Player implements AdvancedMediaPlayer{@Overridepublic void playVlc(String fileName) {//什么也不做}@Overridepublic void playMp4(String fileName) {System.out.println("Playing mp4 file. Name: "+ fileName);      }
}
步骤 3
创建实现了 MediaPlayer 接口的适配器类。MediaAdapter.java
public class MediaAdapter implements MediaPlayer {AdvancedMediaPlayer advancedMusicPlayer;public MediaAdapter(String audioType){if(audioType.equalsIgnoreCase("vlc") ){advancedMusicPlayer = new VlcPlayer();       } else if (audioType.equalsIgnoreCase("mp4")){advancedMusicPlayer = new Mp4Player();}  }@Overridepublic void play(String audioType, String fileName) {if(audioType.equalsIgnoreCase("vlc")){advancedMusicPlayer.playVlc(fileName);}else if(audioType.equalsIgnoreCase("mp4")){advancedMusicPlayer.playMp4(fileName);}}
}
步骤 4
创建实现了 MediaPlayer 接口的实体类。AudioPlayer.java
public class AudioPlayer implements MediaPlayer {MediaAdapter mediaAdapter; @Overridepublic void play(String audioType, String fileName) {    //播放 mp3 音乐文件的内置支持if(audioType.equalsIgnoreCase("mp3")){System.out.println("Playing mp3 file. Name: "+ fileName);         } //mediaAdapter 提供了播放其他文件格式的支持else if(audioType.equalsIgnoreCase("vlc") || audioType.equalsIgnoreCase("mp4")){mediaAdapter = new MediaAdapter(audioType);mediaAdapter.play(audioType, fileName);}else{System.out.println("Invalid media. "+audioType + " format not supported");}}   
}
步骤 5
使用 AudioPlayer 来播放不同类型的音频格式。AdapterPatternDemo.java
public class AdapterPatternDemo {public static void main(String[] args) {AudioPlayer audioPlayer = new AudioPlayer();audioPlayer.play("mp3", "beyond the horizon.mp3");audioPlayer.play("mp4", "alone.mp4");audioPlayer.play("vlc", "far far away.vlc");audioPlayer.play("avi", "mind me.avi");}
}
步骤 6
执行程序,输出结果:Playing mp3 file. Name: beyond the horizon.mp3
Playing mp4 file. Name: alone.mp4
Playing vlc file. Name: far far away.vlc
Invalid media. avi format not supported

适配器模式总体来说分三种:默认适配器模式、对象适配器模式、类适配器模式。先不急着分清楚这几个,先看看例子再说。

默认适配器模式

首先,我们先看看最简单的适配器模式默认适配器模式(Default Adapter)是怎么样的。

我们用 Appache commons-io 包中的 FileAlterationListener 做例子,此接口定义了很多的方法,用于对文件或文件夹进行监控,一旦发生了对应的操作,就会触发相应的方法。

public interface FileAlterationListener {void onStart(final FileAlterationObserver observer);void onDirectoryCreate(final File directory);void onDirectoryChange(final File directory);void onDirectoryDelete(final File directory);void onFileCreate(final File file);void onFileChange(final File file);void onFileDelete(final File file);void onStop(final FileAlterationObserver observer);
}

此接口的一大问题是抽象方法太多了,如果我们要用这个接口,意味着我们要实现每一个抽象方法,如果我们只是想要监控文件夹中的文件创建和文件删除事件,可是我们还是不得不实现所有的方法,很明显,这不是我们想要的。

所以,我们需要下面的一个适配器,它用于实现上面的接口,但是所有的方法都是空方法,这样,我们就可以转而定义自己的类来继承下面这个类即可。

public class FileAlterationListenerAdaptor implements FileAlterationListener {

    public void onStart(final FileAlterationObserver observer) {
    }

    public void onDirectoryCreate(final File directory) {
    }

    public void onDirectoryChange(final File directory) {
    }

    public void onDirectoryDelete(final File directory) {
    }

    public void onFileCreate(final File file) {
    }

    public void onFileChange(final File file) {
    }

    public void onFileDelete(final File file) {
    }

    public void onStop(final FileAlterationObserver observer) {
    }
}

比如我们可以定义以下类,我们仅仅需要实现我们想实现的方法就可以了:

public class FileMonitor extends FileAlterationListenerAdaptor {
    public void onFileCreate(final File file) {
        // 文件创建
        doSomething();
    }

    public void onFileDelete(final File file) {
        // 文件删除
        doSomething();
    }
}

当然,上面说的只是适配器模式的其中一种,也是最简单的一种,无需多言。下面,再介绍“正统的”适配器模式。

对象适配器模式

来看一个《Head First 设计模式》中的一个例子,我稍微修改了一下,看看怎么将鸡适配成鸭,这样鸡也能当鸭来用。因为,现在鸭这个接口,我们没有合适的实现类可以用,所以需要适配器。

public interface Duck {
    public void quack(); // 鸭的呱呱叫
    public void fly(); // 飞
}

public interface Cock {
    public void gobble(); // 鸡的咕咕叫
    public void fly(); // 飞
}

public class WildCock implements Cock {
    public void gobble() {
        System.out.println("咕咕叫");
    }
    public void fly() {
        System.out.println("鸡也会飞哦");
    }
}

鸭接口有 fly() 和 quare() 两个方法,鸡 Cock 如果要冒充鸭,fly() 方法是现成的,但是鸡不会鸭的呱呱叫,没有 quack() 方法。这个时候就需要适配了:

// 毫无疑问,首先,这个适配器肯定需要 implements Duck,这样才能当做鸭来用
public class CockAdapter implements Duck {
    Cock cock;
    // 构造方法中需要一个鸡的实例,此类就是将这只鸡适配成鸭来用
      public CockAdapter(Cock cock) {
        this.cock = cock;
    }

    // 实现鸭的呱呱叫方法
    @Override
      public void quack() {
        // 内部其实是一只鸡的咕咕叫
        cock.gobble();
    }

      @Override
      public void fly() {
        cock.fly();
    }
}

客户端调用很简单了:

public static void main(String[] args) {
    // 有一只野鸡
      Cock wildCock = new WildCock();
      // 成功将野鸡适配成鸭
      Duck duck = new CockAdapter(wildCock);
      ...
}

到这里,大家也就知道了适配器模式是怎么回事了。无非是我们需要一只鸭,但是我们只有一只鸡,这个时候就需要定义一个适配器,由这个适配器来充当鸭,但是适配器里面的方法还是由鸡来实现的。

我们用一个图来简单说明下:

图片

上图应该还是很容易理解的,我就不做更多的解释了。下面,我们看看类适配模式怎么样的。

类适配器模式

废话少说,直接上图:

图片

看到这个图,大家应该很容易理解的吧,通过继承的方法,适配器自动获得了所需要的大部分方法。这个时候,客户端使用更加简单,直接 Target t = new SomeAdapter(); 就可以了。

适配器模式总结

类适配和对象适配的异同:

  • 一个采用继承,一个采用组合;

  • 类适配属于静态实现,对象适配属于组合的动态实现,对象适配需要多实例化一个对象;

  • 总体来说,对象适配用得比较多。

适配器模式和代理模式的异同:比较这两种模式,其实是比较对象适配器模式和代理模式,在代码结构上,它们很相似,都需要一个具体的实现类的实例。但是它们的目的不一样,代理模式做的是增强原方法的活;适配器做的是适配的活,为的是提供“把鸡包装成鸭,然后当做鸭来使用”,而鸡和鸭它们之间原本没有继承关系。

图片

桥梁模式(桥接模式

桥接(Bridge)是用于把抽象化与实现化解耦,使得二者可以独立变化。这种类型的设计模式属于结构型模式,它通过提供抽象化和实现化之间的桥接结构,来实现二者的解耦。

这种模式涉及到一个作为桥接的接口,使得实体类的功能独立于接口实现类,这两种类型的类可被结构化改变而互不影响。

桥接模式的目的是将抽象与实现分离,使它们可以独立地变化,该模式通过将一个对象的抽象部分与它的实现部分分离,使它们可以独立地改变。它通过组合的方式,而不是继承的方式,将抽象和实现的部分连接起来。

我们通过下面的实例来演示桥接模式(Bridge Pattern)的用法。其中,可以使用相同的抽象类方法但是不同的桥接实现类,来画出不同颜色的圆。

理解桥梁模式,其实就是理解代码抽象和解耦。

我们首先需要一个桥梁,它是一个接口,定义提供的接口方法。

 

我们有一个作为桥接实现的 DrawAPI 接口和实现了 DrawAPI 接口的实体类 RedCircleGreenCircleShape 是一个抽象类,将使用 DrawAPI 的对象。BridgePatternDemo 类使用 Shape 类来画出不同颜色的圆。

步骤 1
创建桥接实现接口。DrawAPI.java
public interface DrawAPI {public void drawCircle(int radius, int x, int y);
}
步骤 2
创建实现了 DrawAPI 接口的实体桥接实现类。RedCircle.java
public class RedCircle implements DrawAPI {@Overridepublic void drawCircle(int radius, int x, int y) {System.out.println("Drawing Circle[ color: red, radius: "+ radius +", x: " +x+", "+ y +"]");}
}
GreenCircle.java
public class GreenCircle implements DrawAPI {@Overridepublic void drawCircle(int radius, int x, int y) {System.out.println("Drawing Circle[ color: green, radius: "+ radius +", x: " +x+", "+ y +"]");}
}
步骤 3
使用 DrawAPI 接口创建抽象类 Shape。Shape.java
public abstract class Shape {protected DrawAPI drawAPI;protected Shape(DrawAPI drawAPI){this.drawAPI = drawAPI;}public abstract void draw();  
}
步骤 4
创建实现了 Shape 抽象类的实体类。Circle.java
public class Circle extends Shape {private int x, y, radius;public Circle(int x, int y, int radius, DrawAPI drawAPI) {super(drawAPI);this.x = x;  this.y = y;  this.radius = radius;}public void draw() {drawAPI.drawCircle(radius,x,y);}
}
步骤 5
使用 Shape 和 DrawAPI 类画出不同颜色的圆。BridgePatternDemo.java
public class BridgePatternDemo {public static void main(String[] args) {Shape redCircle = new Circle(100,100, 10, new RedCircle());Shape greenCircle = new Circle(100,100, 10, new GreenCircle());redCircle.draw();greenCircle.draw();}
}
步骤 6
执行程序,输出结果:Drawing Circle[ color: red, radius: 10, x: 100, 100]
Drawing Circle[  color: green, radius: 10, x: 100, 100]

装饰模式

装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其结构。这种类型的设计模式属于结构型模式,它是作为现有的类的一个包装。

装饰器模式通过将对象包装在装饰器类中,以便动态地修改其行为。

这种模式创建了一个装饰类,用来包装原有的类,并在保持类方法签名完整性的前提下,提供了额外的功能。

我们通过下面的实例来演示装饰器模式的用法。其中,我们将把一个形状装饰上不同的颜色,同时又不改变形状类。

要把装饰模式说清楚明白,不是件容易的事情。也许读者知道 Java IO 中的几个类是典型的装饰模式的应用,但是读者不一定清楚其中的关系,也许看完就忘了,希望看完这节后,读者可以对其有更深的感悟。

我们将创建一个 Shape 接口和实现了 Shape 接口的实体类。然后我们创建一个实现了 Shape 接口的抽象装饰类 ShapeDecorator,并把 Shape 对象作为它的实例变量。

RedShapeDecorator 是实现了 ShapeDecorator 的实体类。

DecoratorPatternDemo 类使用 RedShapeDecorator 来装饰 Shape 对象。

步骤 1
创建一个接口:Shape.java
public interface Shape {void draw();
}
步骤 2
创建实现接口的实体类。Rectangle.java
public class Rectangle implements Shape {@Overridepublic void draw() {System.out.println("Shape: Rectangle");}
}
Circle.java
public class Circle implements Shape {@Overridepublic void draw() {System.out.println("Shape: Circle");}
}
步骤 3
创建实现了 Shape 接口的抽象装饰类。ShapeDecorator.java
public abstract class ShapeDecorator implements Shape {protected Shape decoratedShape;public ShapeDecorator(Shape decoratedShape){this.decoratedShape = decoratedShape;}public void draw(){decoratedShape.draw();}  
}
步骤 4
创建扩展了 ShapeDecorator 类的实体装饰类。RedShapeDecorator.java
public class RedShapeDecorator extends ShapeDecorator {public RedShapeDecorator(Shape decoratedShape) {super(decoratedShape);     }@Overridepublic void draw() {decoratedShape.draw();         setRedBorder(decoratedShape);}private void setRedBorder(Shape decoratedShape){System.out.println("Border Color: Red");}
}
步骤 5
使用 RedShapeDecorator 来装饰 Shape 对象。DecoratorPatternDemo.java
public class DecoratorPatternDemo {public static void main(String[] args) {Shape circle = new Circle();ShapeDecorator redCircle = new RedShapeDecorator(new Circle());ShapeDecorator redRectangle = new RedShapeDecorator(new Rectangle());//Shape redCircle = new RedShapeDecorator(new Circle());//Shape redRectangle = new RedShapeDecorator(new Rectangle());System.out.println("Circle with normal border");circle.draw();System.out.println("\nCircle of red border");redCircle.draw();System.out.println("\nRectangle of red border");redRectangle.draw();}
}
步骤 6
执行程序,输出结果:Circle with normal border
Shape: CircleCircle of red border
Shape: Circle
Border Color: RedRectangle of red border
Shape: Rectangle
Border Color: Red

下面,我们再来说说 Java IO 中的装饰模式。看下图 InputStream 派生出来的部分类:

图片

我们知道 InputStream 代表了输入流,具体的输入来源可以是文件(FileInputStream)、管道(PipedInputStream)、数组(ByteArrayInputStream)等,这些就像前面奶茶的例子中的红茶、绿茶,属于基础输入流。

FilterInputStream 承接了装饰模式的关键节点,它的实现类是一系列装饰器,比如 BufferedInputStream 代表用缓冲来装饰,也就使得输入流具有了缓冲的功能,LineNumberInputStream 代表用行号来装饰,在操作的时候就可以取得行号了,DataInputStream 的装饰,使得我们可以从输入流转换为 Java 中的基本类型值。

当然,在 Java IO 中,如果我们使用装饰器的话,就不太适合面向接口编程了,如:

InputStream inputStream = new LineNumberInputStream(new BufferedInputStream(new FileInputStream("")));

这样的结果是,InputStream 还是不具有读取行号的功能,因为读取行号的方法定义在 LineNumberInputStream 类中。

我们应该像下面这样使用:

DataInputStream is = new DataInputStream(
                              new BufferedInputStream(
                                  new FileInputStream("")));

所以说嘛,要找到纯的严格符合设计模式的代码还是比较难的。

门面模式(外观模式)

外观模式(Facade Pattern)隐藏系统的复杂性,并向客户端提供了一个客户端可以访问系统的接口。这种类型的设计模式属于结构型模式,它向现有的系统添加一个接口,来隐藏系统的复杂性。

这种模式涉及到一个单一的类,该类提供了客户端请求的简化方法和对现有系统类方法的委托调用。

门面模式(也叫外观模式,Facade Pattern)在许多源码中有使用,比如 SLF4J 就可以理解为是门面模式的应用。这是一个简单的设计模式,我们直接上代码再说吧。

我们将创建一个 Shape 接口和实现了 Shape 接口的实体类。下一步是定义一个外观类 ShapeMaker

ShapeMaker 类使用实体类来代表用户对这些类的调用。FacadePatternDemo 类使用 ShapeMaker 类来显示结果。

步骤 1
创建一个接口。Shape.java
public interface Shape {void draw();
}
步骤 2
创建实现接口的实体类。Rectangle.java
public class Rectangle implements Shape {@Overridepublic void draw() {System.out.println("Rectangle::draw()");}
}
Square.java
public class Square implements Shape {@Overridepublic void draw() {System.out.println("Square::draw()");}
}
Circle.java
public class Circle implements Shape {@Overridepublic void draw() {System.out.println("Circle::draw()");}
}
步骤 3
创建一个外观类。ShapeMaker.java
public class ShapeMaker {private Shape circle;private Shape rectangle;private Shape square;public ShapeMaker() {circle = new Circle();rectangle = new Rectangle();square = new Square();}public void drawCircle(){circle.draw();}public void drawRectangle(){rectangle.draw();}public void drawSquare(){square.draw();}
}
步骤 4
使用该外观类画出各种类型的形状。FacadePatternDemo.java
public class FacadePatternDemo {public static void main(String[] args) {ShapeMaker shapeMaker = new ShapeMaker();shapeMaker.drawCircle();shapeMaker.drawRectangle();shapeMaker.drawSquare();      }
}
步骤 5
执行程序,输出结果:Circle::draw()
Rectangle::draw()
Square::draw()

组合模式

组合模式(Composite Pattern),又叫部分整体模式,是用于把一组相似的对象当作一个单一的对象。组合模式依据树形结构来组合对象,用来表示部分以及整体层次。这种类型的设计模式属于结构型模式,它创建了对象组的树形结构。

这种模式创建了一个包含自己对象组的类。该类提供了修改相同对象组的方式。

我们通过下面的实例来演示组合模式的用法。实例演示了一个组织中员工的层次结构。

组合模式用于表示具有层次结构的数据,使得我们对单个对象和组合对象的访问具有一致性。

我们有一个类 Employee,该类被当作组合模型类。CompositePatternDemo 类使用 Employee 类来添加部门层次结构,并打印所有员工。

步骤 1
创建 Employee 类,该类带有 Employee 对象的列表。Employee.java
import java.util.ArrayList;
import java.util.List;public class Employee {private String name;private String dept;private int salary;private List<Employee> subordinates;//构造函数public Employee(String name,String dept, int sal) {this.name = name;this.dept = dept;this.salary = sal;subordinates = new ArrayList<Employee>();}public void add(Employee e) {subordinates.add(e);}public void remove(Employee e) {subordinates.remove(e);}public List<Employee> getSubordinates(){return subordinates;}public String toString(){return ("Employee :[ Name : "+ name +", dept : "+ dept + ", salary :"+ salary+" ]");}   
}
步骤 2
使用 Employee 类来创建和打印员工的层次结构。CompositePatternDemo.java
public class CompositePatternDemo {public static void main(String[] args) {Employee CEO = new Employee("John","CEO", 30000);Employee headSales = new Employee("Robert","Head Sales", 20000);Employee headMarketing = new Employee("Michel","Head Marketing", 20000);Employee clerk1 = new Employee("Laura","Marketing", 10000);Employee clerk2 = new Employee("Bob","Marketing", 10000);Employee salesExecutive1 = new Employee("Richard","Sales", 10000);Employee salesExecutive2 = new Employee("Rob","Sales", 10000);CEO.add(headSales);CEO.add(headMarketing);headSales.add(salesExecutive1);headSales.add(salesExecutive2);headMarketing.add(clerk1);headMarketing.add(clerk2);//打印该组织的所有员工System.out.println(CEO); for (Employee headEmployee : CEO.getSubordinates()) {System.out.println(headEmployee);for (Employee employee : headEmployee.getSubordinates()) {System.out.println(employee);}}        }
}
步骤 3
执行程序,输出结果为:Employee :[ Name : John, dept : CEO, salary :30000 ]
Employee :[ Name : Robert, dept : Head Sales, salary :20000 ]
Employee :[ Name : Richard, dept : Sales, salary :10000 ]
Employee :[ Name : Rob, dept : Sales, salary :10000 ]
Employee :[ Name : Michel, dept : Head Marketing, salary :20000 ]
Employee :[ Name : Laura, dept : Marketing, salary :10000 ]
Employee :[ Name : Bob, dept : Marketing, salary :10000 ]

享元模式

享元模式(Flyweight Pattern)主要用于减少创建对象的数量,以减少内存占用和提高性能。这种类型的设计模式属于结构型模式,它提供了减少对象数量从而改善应用所需的对象结构的方式。

享元模式尝试重用现有的同类对象,如果未找到匹配的对象,则创建新对象。我们将通过创建 5 个对象来画出 20 个分布于不同位置的圆来演示这种模式。由于只有 5 种可用的颜色,所以 color 属性被用来检查现有的 Circle 对象。

英文是 Flyweight Pattern,不知道是谁最先翻译的这个词,感觉这翻译真的不好理解,我们试着强行关联起来吧。Flyweight 是轻量级的意思,享元分开来说就是 共享 元器件,也就是复用已经生成的对象,这种做法当然也就是轻量级的了。

复用对象最简单的方式是,用一个 HashMap 来存放每次新生成的对象。每次需要一个对象的时候,先到 HashMap 中看看有没有,如果没有,再生成新的对象,然后将这个对象放入 HashMap 中。

我们将创建一个 Shape 接口和实现了 Shape 接口的实体类 Circle。下一步是定义工厂类 ShapeFactory

ShapeFactory 有一个 Circle 的 HashMap,其中键名为 Circle 对象的颜色。无论何时接收到请求,都会创建一个特定颜色的圆。ShapeFactory 检查它的 HashMap 中的 circle 对象,如果找到 Circle 对象,则返回该对象,否则将创建一个存储在 hashmap 中以备后续使用的新对象,并把该对象返回到客户端。

FlyWeightPatternDemo 类使用 ShapeFactory 来获取 Shape 对象。它将向 ShapeFactory 传递信息(red / green / blue/ black / white),以便获取它所需对象的颜色。

步骤 1
创建一个接口。Shape.java
public interface Shape {void draw();
}
步骤 2
创建实现接口的实体类。Circle.java
public class Circle implements Shape {private String color;private int x;private int y;private int radius;public Circle(String color){this.color = color;     }public void setX(int x) {this.x = x;}public void setY(int y) {this.y = y;}public void setRadius(int radius) {this.radius = radius;}@Overridepublic void draw() {System.out.println("Circle: Draw() [Color : " + color +", x : " + x +", y :" + y +", radius :" + radius);}
}
步骤 3
创建一个工厂,生成基于给定信息的实体类的对象。ShapeFactory.java
import java.util.HashMap;public class ShapeFactory {private static final HashMap<String, Shape> circleMap = new HashMap<>();public static Shape getCircle(String color) {Circle circle = (Circle)circleMap.get(color);if(circle == null) {circle = new Circle(color);circleMap.put(color, circle);System.out.println("Creating circle of color : " + color);}return circle;}
}
步骤 4
使用该工厂,通过传递颜色信息来获取实体类的对象。FlyweightPatternDemo.java
public class FlyweightPatternDemo {private static final String colors[] = { "Red", "Green", "Blue", "White", "Black" };public static void main(String[] args) {for(int i=0; i < 20; ++i) {Circle circle = (Circle)ShapeFactory.getCircle(getRandomColor());circle.setX(getRandomX());circle.setY(getRandomY());circle.setRadius(100);circle.draw();}}private static String getRandomColor() {return colors[(int)(Math.random()*colors.length)];}private static int getRandomX() {return (int)(Math.random()*100 );}private static int getRandomY() {return (int)(Math.random()*100);}
}
步骤 5
执行程序,输出结果:Creating circle of color : Black
Circle: Draw() [Color : Black, x : 36, y :71, radius :100
Creating circle of color : Green
Circle: Draw() [Color : Green, x : 27, y :27, radius :100
Creating circle of color : White
Circle: Draw() [Color : White, x : 64, y :10, radius :100
Creating circle of color : Red
Circle: Draw() [Color : Red, x : 15, y :44, radius :100
Circle: Draw() [Color : Green, x : 19, y :10, radius :100
Circle: Draw() [Color : Green, x : 94, y :32, radius :100
Circle: Draw() [Color : White, x : 69, y :98, radius :100
Creating circle of color : Blue
Circle: Draw() [Color : Blue, x : 13, y :4, radius :100
Circle: Draw() [Color : Green, x : 21, y :21, radius :100
Circle: Draw() [Color : Blue, x : 55, y :86, radius :100
Circle: Draw() [Color : White, x : 90, y :70, radius :100
Circle: Draw() [Color : Green, x : 78, y :3, radius :100
Circle: Draw() [Color : Green, x : 64, y :89, radius :100
Circle: Draw() [Color : Blue, x : 3, y :91, radius :100
Circle: Draw() [Color : Blue, x : 62, y :82, radius :100
Circle: Draw() [Color : Green, x : 97, y :61, radius :100
Circle: Draw() [Color : Green, x : 86, y :12, radius :100
Circle: Draw() [Color : Green, x : 38, y :93, radius :100
Circle: Draw() [Color : Red, x : 76, y :82, radius :100
Circle: Draw() [Color : Blue, x : 95, y :82, radius :100

结构型模式总结

前面,我们说了代理模式、适配器模式、桥梁模式、装饰模式、门面模式、组合模式和享元模式。读者是否可以分别把这几个模式说清楚了呢?在说到这些模式的时候,心中是否有一个清晰的图或处理流程在脑海里呢?

代理模式是做方法增强的,适配器模式是把鸡包装成鸭这种用来适配接口的,桥梁模式做到了很好的解耦,装饰模式从名字上就看得出来,适合于装饰类或者说是增强类的场景,门面模式的优点是客户端不需要关心实例化过程,只要调用需要的方法即可,组合模式用于描述具有层次结构的数据,享元模式是为了在特定的场景中缓存已经创建的对象,用于提高性能。

3.行为型模式

行为型模式关注的是各个类之间的相互作用,将职责划分清楚,使得我们的代码更加地清晰。

策略模式

在策略模式(Strategy Pattern)中一个类的行为或其算法可以在运行时更改。这种类型的设计模式属于行为型模式。

在策略模式定义了一系列算法或策略,并将每个算法封装在独立的类中,使得它们可以互相替换。通过使用策略模式,可以在运行时根据需要选择不同的算法,而不需要修改客户端代码。

在策略模式中,我们创建表示各种策略的对象和一个行为随着策略对象改变而改变的 context 对象。策略对象改变 context 对象的执行算法。

策略模式太常用了,所以把它放到最前面进行介绍。它比较简单,我就不废话,直接用代码说事吧。

我们将创建一个定义活动的 Strategy 接口和实现了 Strategy 接口的实体策略类。Context 是一个使用了某种策略的类。

StrategyPatternDemo,我们的演示类使用 Context 和策略对象来演示 Context 在它所配置或使用的策略改变时的行为变化。

策略模式的 UML 图

步骤 1
创建一个接口。Strategy.java
public interface Strategy {public int doOperation(int num1, int num2);
}
步骤 2
创建实现接口的实体类。OperationAdd.java
public class OperationAdd implements Strategy{@Overridepublic int doOperation(int num1, int num2) {return num1 + num2;}
}
OperationSubtract.java
public class OperationSubtract implements Strategy{@Overridepublic int doOperation(int num1, int num2) {return num1 - num2;}
}
OperationMultiply.java
public class OperationMultiply implements Strategy{@Overridepublic int doOperation(int num1, int num2) {return num1 * num2;}
}
步骤 3
创建 Context 类。Context.java
public class Context {private Strategy strategy;public Context(Strategy strategy){this.strategy = strategy;}public int executeStrategy(int num1, int num2){return strategy.doOperation(num1, num2);}
}
步骤 4
使用 Context 来查看当它改变策略 Strategy 时的行为变化。StrategyPatternDemo.java
public class StrategyPatternDemo {public static void main(String[] args) {Context context = new Context(new OperationAdd());    System.out.println("10 + 5 = " + context.executeStrategy(10, 5));context = new Context(new OperationSubtract());      System.out.println("10 - 5 = " + context.executeStrategy(10, 5));context = new Context(new OperationMultiply());    System.out.println("10 * 5 = " + context.executeStrategy(10, 5));}
}
步骤 5
执行程序,输出结果:10 + 5 = 15
10 - 5 = 5
10 * 5 = 50

观察者模式

观察者模式是一种行为型设计模式,它定义了一种一对多的依赖关系,当一个对象的状态发生改变时,其所有依赖者都会收到通知并自动更新。

当对象间存在一对多关系时,则使用观察者模式(Observer Pattern)。比如,当一个对象被修改时,则会自动通知依赖它的对象。观察者模式属于行为型模式。

观察者模式对于我们来说,真是再简单不过了。无外乎两个操作,观察者订阅自己关心的主题和主题有数据变化后通知观察者们。

观察者模式使用三个类 Subject、Observer 和 Client。Subject 对象带有绑定观察者到 Client 对象和从 Client 对象解绑观察者的方法。我们创建 Subject 类、Observer 抽象类和扩展了抽象类 Observer 的实体类。

ObserverPatternDemo,我们的演示类使用 Subject 和实体类对象来演示观察者模式。

观察者模式的 UML 图

步骤 1
创建 Subject 类。Subject.java
import java.util.ArrayList;
import java.util.List;public class Subject {private List<Observer> observers = new ArrayList<Observer>();private int state;public int getState() {return state;}public void setState(int state) {this.state = state;notifyAllObservers();}public void attach(Observer observer){observers.add(observer);      }public void notifyAllObservers(){for (Observer observer : observers) {observer.update();}}  
}
步骤 2
创建 Observer 类。Observer.java
public abstract class Observer {protected Subject subject;public abstract void update();
}
步骤 3
创建实体观察者类。BinaryObserver.java
public class BinaryObserver extends Observer{public BinaryObserver(Subject subject){this.subject = subject;this.subject.attach(this);}@Overridepublic void update() {System.out.println( "Binary String: " + Integer.toBinaryString( subject.getState() ) ); }
}
OctalObserver.java
public class OctalObserver extends Observer{public OctalObserver(Subject subject){this.subject = subject;this.subject.attach(this);}@Overridepublic void update() {System.out.println( "Octal String: " + Integer.toOctalString( subject.getState() ) ); }
}
HexaObserver.java
public class HexaObserver extends Observer{public HexaObserver(Subject subject){this.subject = subject;this.subject.attach(this);}@Overridepublic void update() {System.out.println( "Hex String: " + Integer.toHexString( subject.getState() ).toUpperCase() ); }
}
步骤 4
使用 Subject 和实体观察者对象。ObserverPatternDemo.java
public class ObserverPatternDemo {public static void main(String[] args) {Subject subject = new Subject();new HexaObserver(subject);new OctalObserver(subject);new BinaryObserver(subject);System.out.println("First state change: 15");   subject.setState(15);System.out.println("Second state change: 10");  subject.setState(10);}
}
步骤 5
执行程序,输出结果:First state change: 15
Hex String: F
Octal String: 17
Binary String: 1111
Second state change: 10
Hex String: A
Octal String: 12
Binary String: 1010

责任链模式

责任链模式(Chain of Responsibility Pattern)为请求创建了一个接收者对象的链。这种模式给予请求的类型,对请求的发送者和接收者进行解耦。这种类型的设计模式属于行为型模式。

责任链模式通过将多个处理器(处理对象)以链式结构连接起来,使得请求沿着这条链传递,直到有一个处理器处理该请求为止。

责任链模式允许多个对象都有机会处理请求,从而避免请求的发送者和接收者之间的耦合关系。将这些对象连成一条链,并沿着这条链传递请求,直到有一个对象处理它为止。

责任链通常需要先建立一个单向链表,然后调用方只需要调用头部节点就可以了,后面会自动流转下去。比如流程审批就是一个很好的例子,只要终端用户提交申请,根据申请的内容信息,自动建立一条责任链,然后就可以开始流转了。

我们创建抽象类 AbstractLogger,带有详细的日志记录级别。然后我们创建三种类型的记录器,都扩展了 AbstractLogger。每个记录器消息的级别是否属于自己的级别,如果是则相应地打印出来,否则将不打印并把消息传给下一个记录器。

步骤 1
创建抽象的记录器类。AbstractLogger.java
public abstract class AbstractLogger {public static int INFO = 1;public static int DEBUG = 2;public static int ERROR = 3;protected int level;//责任链中的下一个元素protected AbstractLogger nextLogger;public void setNextLogger(AbstractLogger nextLogger){this.nextLogger = nextLogger;}public void logMessage(int level, String message){if(this.level <= level){write(message);}if(nextLogger !=null){nextLogger.logMessage(level, message);}}abstract protected void write(String message);}
步骤 2
创建扩展了该记录器类的实体类。ConsoleLogger.java
public class ConsoleLogger extends AbstractLogger {public ConsoleLogger(int level){this.level = level;}@Overrideprotected void write(String message) {    System.out.println("Standard Console::Logger: " + message);}
}
ErrorLogger.java
public class ErrorLogger extends AbstractLogger {public ErrorLogger(int level){this.level = level;}@Overrideprotected void write(String message) {    System.out.println("Error Console::Logger: " + message);}
}
FileLogger.java
public class FileLogger extends AbstractLogger {public FileLogger(int level){this.level = level;}@Overrideprotected void write(String message) {    System.out.println("File::Logger: " + message);}
}
步骤 3
创建不同类型的记录器。赋予它们不同的错误级别,并在每个记录器中设置下一个记录器。每个记录器中的下一个记录器代表的是链的一部分。ChainPatternDemo.java
public class ChainPatternDemo {private static AbstractLogger getChainOfLoggers(){AbstractLogger errorLogger = new ErrorLogger(AbstractLogger.ERROR);AbstractLogger fileLogger = new FileLogger(AbstractLogger.DEBUG);AbstractLogger consoleLogger = new ConsoleLogger(AbstractLogger.INFO);errorLogger.setNextLogger(fileLogger);fileLogger.setNextLogger(consoleLogger);return errorLogger;  }public static void main(String[] args) {AbstractLogger loggerChain = getChainOfLoggers();loggerChain.logMessage(AbstractLogger.INFO, "This is an information.");loggerChain.logMessage(AbstractLogger.DEBUG, "This is a debug level information.");loggerChain.logMessage(AbstractLogger.ERROR, "This is an error information.");}
}
步骤 4
执行程序,输出结果:Standard Console::Logger: This is an information.
File::Logger: This is a debug level information.
Standard Console::Logger: This is a debug level information.
Error Console::Logger: This is an error information.
File::Logger: This is an error information.
Standard Console::Logger: This is an error information.

模板方法模式

在模板模式(Template Pattern)中,一个抽象类公开定义了执行它的方法的方式/模板。它的子类可以按需要重写方法实现,但调用将以抽象类中定义的方式进行。这种类型的设计模式属于行为型模式。

在含有继承结构的代码中,模板方法模式是非常常用的。

我们将创建一个定义操作的 Game 抽象类,其中,模板方法设置为 final,这样它就不会被重写。Cricket 和 Football 是扩展了 Game 的实体类,它们重写了抽象类的方法。

TemplatePatternDemo,我们的演示类使用 Game 来演示模板模式的用法。

模板模式的 UML 图

步骤 1
创建一个抽象类,它的模板方法被设置为 final。Game.java
public abstract class Game {abstract void initialize();abstract void startPlay();abstract void endPlay();//模板public final void play(){//初始化游戏initialize();//开始游戏startPlay();//结束游戏endPlay();}
}
步骤 2
创建扩展了上述类的实体类。Cricket.java
public class Cricket extends Game {@Overridevoid endPlay() {System.out.println("Cricket Game Finished!");}@Overridevoid initialize() {System.out.println("Cricket Game Initialized! Start playing.");}@Overridevoid startPlay() {System.out.println("Cricket Game Started. Enjoy the game!");}
}
Football.java
public class Football extends Game {@Overridevoid endPlay() {System.out.println("Football Game Finished!");}@Overridevoid initialize() {System.out.println("Football Game Initialized! Start playing.");}@Overridevoid startPlay() {System.out.println("Football Game Started. Enjoy the game!");}
}
步骤 3
使用 Game 的模板方法 play() 来演示游戏的定义方式。TemplatePatternDemo.java
public class TemplatePatternDemo {public static void main(String[] args) {Game game = new Cricket();game.play();System.out.println();game = new Football();game.play();      }
}
步骤 4
执行程序,输出结果:Cricket Game Initialized! Start playing.
Cricket Game Started. Enjoy the game!
Cricket Game Finished!Football Game Initialized! Start playing.
Football Game Started. Enjoy the game!
Football Game Finished!

状态模式

在状态模式(State Pattern)中,类的行为是基于它的状态改变的,这种类型的设计模式属于行为型模式。

在状态模式中,我们创建表示各种状态的对象和一个行为随着状态对象改变而改变的 context 对象。

状态模式允许对象在内部状态改变时改变其行为,使得对象在不同的状态下有不同的行为表现。通过将每个状态封装成独立的类,可以避免使用大量的条件语句来实现状态切换。

备注:策略模式VS状态模式

我们将创建一个 State 接口和实现了 State 接口的实体状态类。Context 是一个带有某个状态的类。

StatePatternDemo,我们的演示类使用 Context 和状态对象来演示 Context 在状态改变时的行为变化。

状态模式的 UML 图

步骤 1
创建一个接口。State.java
public interface State {public void doAction(Context context);
}
步骤 2
创建实现接口的实体类。StartState.java
public class StartState implements State {public void doAction(Context context) {System.out.println("Player is in start state");context.setState(this); }public String toString(){return "Start State";}
}
StopState.java
public class StopState implements State {public void doAction(Context context) {System.out.println("Player is in stop state");context.setState(this); }public String toString(){return "Stop State";}
}
步骤 3
创建 Context 类。Context.java
public class Context {private State state;public Context(){state = null;}public void setState(State state){this.state = state;     }public State getState(){return state;}
}
步骤 4
使用 Context 来查看当状态 State 改变时的行为变化。StatePatternDemo.java
public class StatePatternDemo {public static void main(String[] args) {Context context = new Context();StartState startState = new StartState();startState.doAction(context);System.out.println(context.getState().toString());StopState stopState = new StopState();stopState.doAction(context);System.out.println(context.getState().toString());}
}
步骤 5
执行程序,输出结果:Player is in start state
Start State
Player is in stop state
Stop State

行为型模式总结

行为型模式部分介绍了策略模式、观察者模式、责任链模式、模板方法模式和状态模式,其实,经典的行为型模式还包括备忘录模式、命令模式等,但是它们的使用场景比较有限,而且本文篇幅也挺大了,我就不进行介绍了。

总结

学习设计模式的目的是为了让我们的代码更加的优雅、易维护、易扩展。这次整理这篇文章,让我重新审视了一下各个设计模式,对我自己而言收获还是挺大的。我想,文章的最大收益者一般都是作者本人,为了写一篇文章,需要巩固自己的知识,需要寻找各种资料,而且,自己写过的才最容易记住,也算是我给读者的建议吧。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/379130.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

等保-Linux等保测评

等保-Linux等保测评 1.查看相应文件&#xff0c;账户xiaoming的密码设定多久过期 rootdengbap:~# chage -l xiaoming Last password change : password must be changed Password expires : pass…

理解类与对象:面向对象基础

目录 1. 类的定义1.1 格式1.2 访问限定符1.3 类域 2.实例化2.1 实例化概念2.2 对象大小 3.this指针 1. 类的定义 1.1 格式 class为定义类的关键字&#xff0c;Date为类的名字&#xff0c;{ }中为类的主体&#xff0c;注意类定义结束后面的分号不能省略。类体中内容称为类的成…

【博士每天一篇文献-算法】连续学习算法之HNet:Continual learning with hypernetworks

阅读时间&#xff1a;2023-12-26 1 介绍 年份&#xff1a;2019 作者&#xff1a;Johannes von Oswald&#xff0c;Google Research&#xff1b;Christian Henning&#xff0c;EthonAI AG&#xff1b;Benjamin F. Grewe&#xff0c;苏黎世联邦理工学院神经信息学研究所 期刊&a…

如何在项目中打印sql和执行的时间

目标&#xff1a;打印DAO方法中sql和执行的时间 一种方式是去实现Mybatis的拦截器Interceptor &#xff0c;比较麻烦&#xff1b; 这里介绍一种比较简单的实现方式&#xff1b; 1、如何打印sql&#xff1f; 配置文件加这个可以打印出com.zhenhui.ids.busi.watch包下执行的sq…

3D线上展厅:元宇宙时代的营销利器,流量暴增的秘密武器!

在体验经济蓬勃发展的当下&#xff0c;企业营销领域正以前所未有的热情探索创新路径&#xff0c;元宇宙这一融合了无限想象与未来科技的概念&#xff0c;成为了众多品牌竞相追逐的新蓝海。3D技术、增强现实&#xff08;AR&#xff09;、虚拟现实&#xff08;VR&#xff09;以及…

【ProtoBuf】proto 3 语法 -- 详解

这个部分会对通讯录进行多次升级&#xff0c;使用 2.x 表示升级的版本&#xff0c;最终将会升级如下内容&#xff1a; 不再打印联系人的序列化结果&#xff0c;而是将通讯录序列化后并写入文件中。 从文件中将通讯录解析出来&#xff0c;并进行打印。 新增联系人属性&#xff…

谈谈大数据采集和常见问题

01 什么是数据采集 数据采集是大数据的基石&#xff0c;不论是现在的互联网公司&#xff0c;物联网公司或者传统的IT公司&#xff0c;每个业务流程环节都会产生大量的数据&#xff0c;同时用户操作的日志也会产生大量的数据&#xff0c;为了将这些结构化和非结构化的数据进行…

【常见开源库的二次开发】基于openssl的加密与解密——单向散列函数(四)

目录&#xff1a; 目录&#xff1a; 一、什么是单项散列函数&#xff1f; 1.1 如何验证文件是否被修改过 1.2 单项散列函数&#xff1a; 二、单向hash抗碰撞 2.1 弱抗碰撞&#xff08;Weak Collision Resistance&#xff09; 2.2 强抗碰撞&#xff08;Strong Collision Resista…

Webpack详解

Webpack Webpack 是一个现代 JavaScript 应用程序的静态模块打包器&#xff08;module bundler&#xff09;。它允许开发者将项目中的资源&#xff08;如 JavaScript、CSS、图片等&#xff09;视为模块&#xff0c;通过分析和处理这些模块之间的依赖关系&#xff0c;将它们打包…

Python酷库之旅-第三方库Pandas(024)

目录 一、用法精讲 61、pandas.to_numeric函数 61-1、语法 61-2、参数 61-3、功能 61-4、返回值 61-5、说明 61-6、用法 61-6-1、数据准备 61-6-2、代码示例 61-6-3、结果输出 62、pandas.to_datetime函数 62-1、语法 62-2、参数 62-3、功能 62-4、返回值 62-…

ospf的MGRE实验

第一步&#xff1a;配IP [R1-GigabitEthernet0/0/0]ip address 12.0.0.1 24 [R1-GigabitEthernet0/0/1]ip address 21.0.0.1 24 [R1-LoopBack0]ip address 192.168.1.1 24 [ISP-GigabitEthernet0/0/0]ip address 12.0.0.2 24 [ISP-GigabitEthernet0/0/1]ip address 21.0.0.2 24…

Hadoop3:HDFS-存储优化之纠删码

一、集群环境 集群一共5个节点&#xff0c;102/103/104/105/106 二、纠删码原理 1、简介 HDFS默认情况下&#xff0c;一个文件有3个副本&#xff0c;这样提高了数据的可靠性&#xff0c;但也带来了2倍的冗余开销。Hadoop3.x引入了纠删码&#xff0c;采用计算的方式&#x…

新一代大语言模型 GPT-5 对工作与生活的影响及应对策略

文章目录 &#x1f4d2;一、引言 &#x1f4d2;二、GPT-5 的发展背景 &#x1f680;&#xff08;一&#xff09;GPT-4 的表现与特点 &#x1f680;&#xff08;二&#xff09;GPT-5 的预期进步 &#x1f4d2;三、GPT-5 对工作的影响 &#x1f680;&#xff08;一&#xf…

交叉编译ethtool(ubuntu 2018)

参考文章&#xff1a;https://www.cnblogs.com/nazhen/p/16800427.html https://blog.csdn.net/weixin_43128044/article/details/137953913 1、下载相关安装包 //ethtool依赖libmul git clone http://git.netfilter.org/libmnl //ethtool源码 git clone http://git.kernel.or…

OpenGL笔记十三之Uniform向量数据传输、使用glUniform3f和glUniform3fv

OpenGL笔记十三之Uniform向量数据传输、使用glUniform3f和glUniform3fv —— 2024-07-14 晚上 bilibili赵新政老师的教程看后笔记 code review! 文章目录 OpenGL笔记十三之Uniform向量数据传输、使用glUniform3f和glUniform3fv1.glUniform3f1.1.运行1.2.vs1.3.fs1.4.shader.…

科研绘图系列:R语言雨云图(Raincloud plot)

介绍 雨云图(Raincloud plot)是一种数据可视化工具,它结合了多种数据展示方式,旨在提供对数据集的全面了解。雨云图通常包括以下几个部分: 密度图(Density plot):表示数据的分布情况,密度图的曲线可以展示数据在不同数值区间的密度。箱线图(Box plot):显示数据的中…

.NET MAUI开源架构_1.学习资源分享

最近需要开发Android的App&#xff0c;想预研下使用.NET开源架构.NET MAUI来开发App程序。因此网上搜索了下相关资料&#xff0c;现在把我查询的结果记录下&#xff0c;方便后面学习。 1.官方文档 1.1MAUI官方学习网站 .NET Multi-Platform App UI 文档 - .NET MAUI | Micro…

leetcode简单题27 N.119 杨辉三角II rust描述

// 直接生成杨辉三角当前行 pub fn get_row(row_index: i32) -> Vec<i32> {let mut row vec![1; (row_index 1) as usize];for i in 1..row_index as usize {for j in (1..i).rev() {row[j] row[j] row[j - 1];}}row } // 空间优化的方法 pub fn get_row2(row_ind…

在Mac上免费恢复误删除的Word文档

Microsoft Word for Mac是一个有用的文字处理应用程序&#xff0c;它与Microsoft Office套件捆绑在一起。该软件的稳定版本包括 Word 2019、2016、2011 等。 Word for Mac 与 Apple Pages 兼容;这允许在不同的操作系统版本中使用Word文档&#xff0c;而不会遇到任何麻烦。 与…

springboot websocket 知识点汇总

以下是一个详细全面的 Spring Boot 使用 WebSocket 的知识点汇总 1. 配置 WebSocket 添加依赖 进入maven官网, 搜索spring-boot-starter-websocket&#xff0c;选择版本, 然后把依赖复制到pom.xml的dependencies标签中 配置 WebSocket 创建一个配置类 WebSocketConfig&…