电路学习——经典运放电路之滞回比较器(施密特触发器)(2024.07.18)

参考链接1: 电子设计教程29:滞回比较器(施密特触发器)
参考链接2: 滞回比较器电路详细分析
参考链接3: 比较器精髓:施密特触发器,正反馈的妙用
参考链接4: 比较器反馈电阻选多大?理解滞后效应,轻松设计正反馈
参考链接5: 比较器基础知识及应用
参考链接6: 四种迟滞比较器
参考链接7: 滞回比较器介绍及高低阈值计算
参考链接8: 【讲堂】“片”(窗口)比较器电路原理图解
参考链接9: 【分享】运放比较器电路特性
参考链接10: 窗口电压比较器电路

  在此感谢各位前辈大佬的总结,写这个只是为了记录学习大佬资料的过程,内容基本都是搬运的大佬博客,觉着有用自己搞过来自己记一下,如果有大佬觉着我搬过来不好,联系我删。

电路学习——经典运放电路之滞回比较器(施密特触发器)(2024.07.18)

  • 1、什么是滞回比较器(施密特触发器)?
  • 2、反向迟滞比较器/滞回比较器(施密特触发器)原理应用
  • 3、同向迟滞比较器/滞回比较器(施密特触发器)原理应用
  • 4、疑惑点以及解答(比较器与运放的联系和区别)
    • 4.1、比较器为啥加上拉电阻?
    • 4.2、比较器与运放用的场景
    • 4.3、输出信号的形式与响应速度
  • 5、滞回比较器拓展之窗口比较器

1、什么是滞回比较器(施密特触发器)?

  首先,比较器长这样(见下图),滞回“比较器”,归根到底还是比较器,这里的滞回是指电路没有那么敏感,有一点的抗干扰能力(比如你信号有杂波,它可以“滤波”),滞回不是一个阈值点,而是创建不同的上升和下降阈值,这使得输出始终保持在低或高的状态。
在这里插入图片描述
  滞回比较器长这样(见下图),可以看出与普通比较器区别是:多了个同相输入端与运放输出端通过电阻相连,也就是多了正反馈回路。
在这里插入图片描述

2、反向迟滞比较器/滞回比较器(施密特触发器)原理应用

  反相滞回比较器:同相端输入基准电压,反向端输入检测信号,当输入电压高于Uth时,比较器输出低电平,当输入电压低于Utl时比较器输出高电平,在两者之间保持。
  在实际应用中,该电路通常用于保护某个值在一定范围内,这个范围可以人为设定,因此需要设置参考电压,如下图通过 V C C = 5 V VCC=5V VCC=5V R 1 = 10 k Ω R_1=10kΩ R1=10kΩ R 2 = 10 k Ω R_2=10kΩ R2=10kΩ分压设定触发电压 V A V_A VA,那么 V A = R 2 R 1 + R 2 ∗ V C C = 10 k Ω 10 k Ω + 10 k Ω ∗ 5 V = 2.5 V V_A=\frac{R_2}{R_1+R_2}*VCC=\frac{10kΩ}{10kΩ+10kΩ}*5V=2.5V VA=R1+R2R2VCC=10kΩ+10kΩ10kΩ5V=2.5V,反相输入端输入电压为 V i n V_{in} Vin,输出端电压为 V o V_o Vo
在这里插入图片描述
  当 V i n < V A V_{in}<V_A Vin<VA,即 V i n < 2.5 V V_{in}<2.5V Vin<2.5V时,由于比较器特性,输出 V o V_o Vo为低电平,即 0 V 0V 0V,那么分析相当于 V C C VCC VCC R 1 R_1 R1 R 2 / / R 4 R_2//R_4 R2//R4,等效电路图如下图仿真所示,设定 V C C = 5 V VCC=5V VCC=5V V D D = 5 V VDD=5V VDD=5V R 1 = 10 k Ω R_1=10kΩ R1=10kΩ R 2 = 10 k Ω R_2=10kΩ R2=10kΩ R 3 = 10 k Ω R_3=10kΩ R3=10kΩ R 4 = 100 k Ω R_4=100kΩ R4=100kΩ,那么电阻分压后: V A = R 2 R 1 + R 2 / / R 4 ∗ V C C = 10 k Ω 10 k Ω + 10 k Ω / / 100 k Ω ∗ 5 V = 10 k Ω 10 k Ω + 9.09091 k Ω ∗ 5 V = 2.381 V V_A=\frac{R_2}{R_1+R_2//R_4}*VCC=\frac{10kΩ}{10kΩ+10kΩ//100kΩ}*5V=\frac{10kΩ}{10kΩ+9.09091kΩ}*5V=2.381V VA=R1+R2//R4R2VCC=10kΩ+10kΩ//100kΩ10kΩ5V=10kΩ+9.09091kΩ10kΩ5V=2.381V
在这里插入图片描述
在这里插入图片描述

  当 V i n > V A V_{in}>V_A Vin>VA,即 V i n > 2.5 V V_{in}>2.5V Vin>2.5V时,设定 V C C = 5 V VCC=5V VCC=5V V D D = 5 V VDD=5V VDD=5V R 1 = 10 k Ω R_1=10kΩ R1=10kΩ R 2 = 10 k Ω R_2=10kΩ R2=10kΩ R 3 = 10 k Ω R_3=10kΩ R3=10kΩ R 4 = 100 k Ω R_4=100kΩ R4=100kΩ,由于比较器特性,输出 V o V_o Vo V D D VDD VDD拉高为高电平,即 5 V 5V 5V,那么电路分析那么电阻分压后(相当于 V C C VCC VCC R 1 / / ( R 3 + R 4 ) R_1//(R_3+R_4) R1//(R3+R4) R 2 R_2 R2): V A = 2.609 V V_A=2.609V VA=2.609V
在这里插入图片描述
在这里插入图片描述

  可以看出,以上两个计算算出了两个 V A V_A VA分别为 2.381 V 2.381V 2.381V 2.609 V 2.609V 2.609V,因此下图中的 U l = 2.381 V U_l=2.381V Ul=2.381V U h = 2.609 V U_h=2.609V Uh=2.609V。如果输入的 V i n < U l V_{in}<U_l Vin<Ul,即 V i n < 2.381 V V_{in}<2.381V Vin<2.381V,输出就是低电平, V i n > U h V_{in}>U_h Vin>Uh,即 V i n > 2.609 V V_{in}>2.609V Vin>2.609V,输出就是高电平。可以看出,中间相当于有一个缓冲区。
在这里插入图片描述
  通过构建仿真电路,我们仿真一下上面计算的值对不对,橙色波形是输入的信号(这里采用的是三角波,方便查看电压值变化),红色波形是比较器输出的信号。
在这里插入图片描述在这里插入图片描述
  通过示波器,我们可以看到两个电压值分别为 2.414 V 2.414V 2.414V 2.714 V 2.714V 2.714V,与计算的值有一定的误差,目前还不确定该误差正常不正常,按理说仿真是理想的,应该与计算值无误的,这个以后看有机会确定一下这个误差来源吧。

3、同向迟滞比较器/滞回比较器(施密特触发器)原理应用

  同相滞回比较器:同相端输入检测信号,反向端输入基准电压,当输入电压高于Uth时,比较器输出高电平,当输入电压低于Utl时比较器输出低电平,在两者之间保持。
  类比于反向迟滞比较器,同向迟滞比较器的信号输入是在同相输入端,参考电压设置在反向输入端,同样是正反馈回路。这里就不贴图了。

4、疑惑点以及解答(比较器与运放的联系和区别)

4.1、比较器为啥加上拉电阻?

在这里插入图片描述
  解惑:很多人会疑惑输出端为什么要加一个上拉电阻?
  答:相较于运放采用推挽输出的方式,比较器采用开集输出,需要加上拉电阻

4.2、比较器与运放用的场景

  运放一般工作在闭环负反馈状态(线性区),主要作用是对输入端信号进行放大;比较器工作在开环状态(非线性区),主要是对输入端的信号进行比较判别,翻转速度比较快
在这里插入图片描述
在这里插入图片描述

  在对速度要求不高的时候,运放可以工作于开环当做比较器使用,但输出会受到电源轨的限制因此需要注意电平匹配问题。反过来电压比较器在大部分情况下不能作为运放使用,主要是由于比较器没有做相位补偿闭环容易不稳定。

4.3、输出信号的形式与响应速度

  相较于运放输出的是模拟信号,比较器输出的是高低电平对应数字的0和1集电极开路使其可兼容TTL或CMOS
  相较于运放,比较器的响应速度比较快,这也是由于其内部没有做相位补偿的缘故。

5、滞回比较器拓展之窗口比较器

  将两个滞回比较器搭配使用,可以做出一个窗口比较器,下限运放的正端接的被测信号,负端则是基准。而上限运放正端接基准,负端接被测信号。本电路有两个基准比较端,整定值分别为+5V和-5V。由电路结构可知,只要+5V>IN>-5V,换言之,只在输入信号在+5V~-5C“该片范围”之内,电路就会维持原态(或称静态)的高电平输出状态。反之,IN信号要么高于+5V,要么低于-5V,只要出离了“该片范围”,N1(或N2)的输出端即会翻转,变成低电平状态。

在这里插入图片描述
  这里假设输入为( − 5 V , + 5 V -5V,+5V 5V+5V),上面部分同相输入端电压大于反向输入端电压,那么输出被R5拉高;下面部分同相输入端电压大于反向输入端电压,那么也是输入端被R5拉高,所以上下两个输出都是高电平。具体这里不在分析,可以参考上面的分析计算;
  这里假设输入为( − ∞ -∞ − 5 V -5V 5V)、( 5 V 5V 5V,+∞),上面部分同相输入端电压小于反向输入端电压,那么输出为低电平(这里是双电源供电,应该是输出-15V);下面部分同相输入端电压大于反向输入端电压,因为比较器是开路集电极输出(这个意思就是集电极什么都没有接,所以在这里,下面的比较器输出端被上面运放输出端拉低至0V),所以输出是低电平。
  可以看到这里没有正反馈电阻,当然你也可以添加正反馈电阻,这个正反馈电阻一般取100KΩ。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/381655.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Vue3 内置组件Teleport以及Susponse

1、Teleport 1.1 概念 将组件模版中的指定的dom挂载&#xff08;传送&#xff09;到指定的dom元素上&#xff0c;如挂载到body中&#xff0c;挂载到#app选择器上面。 1.2 应用场景 经典案例如&#xff1a;模态框。 <template><teleport to"body">&l…

【LeetCode】对称二叉树

目录 一、题目二、解法完整代码 一、题目 给你一个二叉树的根节点 root &#xff0c; 检查它是否轴对称。 示例 1&#xff1a; 输入&#xff1a;root [1,2,2,3,4,4,3] 输出&#xff1a;true 示例 2&#xff1a; 输入&#xff1a;root [1,2,2,null,3,null,3] 输出&#…

如何在 Android 中删除和恢复照片

对于智能手机用户来说&#xff0c;相机几乎已经成为一种条件反射&#xff1a;你看到值得注意的东西&#xff0c;就拍下来&#xff0c;然后永远保留这段记忆。但如果那张照片不值得永远保留怎么办&#xff1f;众所周知&#xff0c;纸质快照拿在手里很难舍弃&#xff0c;而 Andro…

『 Linux 』信号概念与信号的产生

文章目录 信号概念前台进程与后台进程信号的本质硬件理解信号的产生 信号概念 "信号"一词指用来传达信息或只是的各种形式的提示或标志; 在生活中常见的信号例如红绿灯,交通标志,短信通知等 在操作系统中,"信号"是一种用于异步通知进程发生特定事件的机制;…

WebGIS的Web服务概述

WebGIS是互联网技术应用于GIS开发的产物&#xff0c;是现代GIS技术的重要组成部分&#xff0c;其中的Web服务是现代WebGIS的核心技术和重要标志&#xff0c;它集GIS、程序组件和互联网的优点于一身&#xff0c;深刻改变了GIS开发和应用的方式&#xff0c;绕过了本地数据转换和本…

Yum包下载

1. 起因 内网有一台服务器需要升级php版本,维护的同学又不想二进制安装.服务器只有一个光盘的yum仓库 2. 解决方法 解决思路如下: 外网找一台机器配置php8.3.8的仓库外网服务器下载软件集并打包内网服务器上传并解压实现升级 2.1 下载php8.3.8仓库 配置php仓库 rootcent…

Postman导出excel文件

0 写在前面 在我们后端写接口的时候&#xff0c;前端页面还没有出来&#xff0c;我们就得先接口测试&#xff0c;在此记录下如何使用postman测试导出excel接口。 如果不会使用接口传参可以看我这篇博客如何使用Postman 1 方法一 2 方法二 3 写在末尾 虽然在代码中写入文件名…

7月21日,贪心练习

大家好呀&#xff0c;今天带来一些贪心算法的应用解题、 一&#xff0c;柠檬水找零 . - 力扣&#xff08;LeetCode&#xff09; 解析&#xff1a; 本题的贪心体现在对于20美元的处理上&#xff0c;我们总是优先把功能较少的10元作为找零&#xff0c;这样可以让5元用处更大 …

OpenAI发布迷你AI模型GPT-4o mini

本心、输入输出、结果 文章目录 OpenAI发布迷你AI模型GPT-4o mini前言OpenAI发布迷你AI模型GPT-4o mini英伟达联合发布 Mistral-NeMo AI 模型:120 亿参数、上下文窗口 12.8 万个 tokenOpenAI发布迷你AI模型GPT-4o mini 编辑 | 简简单单 Online zuozuo 地址 | https://blog.csd…

vulnhub——Ai-Web1靶机渗透

Ai-Web1靶机渗透 靶机下载&#xff1a; 官网地址&#xff1a;https://www.vulnhub.com/entry/ai-web-1,353/ 攻击机&#xff1a;kali2024 一、信息收集 发下目标主机的IP为&#xff1a;192.168.201.141 用nmap工具扫描一下对方主机和服务 发现他打开了80端口 发现搜不到于是…

提升无线网络安全:用Python脚本发现并修复WiFi安全问题

文章目录 概要环境准备技术细节3.1 实现原理3.2 创建python文件3.3 插入内容3.4 运行python脚本 加固建议4.1 选择强密码4.2 定期更换密码4.3 启用网络加密4.4 关闭WPS4.5 隐藏SSID4.6 限制连接设备 小结 概要 在本文中&#xff0c;我们将介绍并展示如何使用Python脚本来测试本…

Linux系统学习日记——vim操作手册

Vim编辑器是linux下的一个命令行编辑器&#xff0c;类似于我们windows下的记事本。 目录 打开文件 编辑 保存退出 打开文件 打开 hello.c不存在也可以打开&#xff0c;保存时vim会自动创建。 效果 Vim打开时&#xff0c;处于命令模式&#xff0c;即执行命令的模式&#x…

Web 3.0革新:社交金融与边玩边赚开启用户数据主权时代

目录 Web 3.0与社交商业模式 传统社交平台的问题 去中心化社交创新 Mirror&#xff1a;去中心化内容发布平台 Lens Protocol&#xff1a;去中心化社交图谱 Maskbook&#xff1a;隐私保护的社交方式 Web 3.0与与边玩边赚模式 经济模型解析 新商业模式的探索 Axie Infi…

【MySQL-17】存储过程-[变量篇]详解-(系统变量&用户定义变量&局部变量)

前言 大家好吖&#xff0c;欢迎来到 YY 滴MySQL系列 &#xff0c;热烈欢迎&#xff01; 本章主要内容面向接触过C的老铁 主要内容含&#xff1a; 欢迎订阅 YY滴C专栏&#xff01;更多干货持续更新&#xff01;以下是传送门&#xff01; YY的《C》专栏YY的《C11》专栏YY的《Lin…

《0基础》学习Python——第二十二讲__网络爬虫/<5>爬取豆瓣电影封面图

一、爬取豆瓣电影的图片封面 1、经过上节课我们所爬取的豆瓣电影的电影名、年份、国家、导演、主演、剧情&#xff0c;那么接下来我们将学习如何去爬取这些电影的图片&#xff0c;并将这些图片存放在文件夹中。 2、过程实现&#xff1a; 2.1、获取网页源码 首先还是和爬取电影名…

FreeU: Free Lunch in Diffusion U-Net

FreeU&#xff1a;扩散 U-Net 模型的免费午餐 论文链接&#xff1a;https://arxiv.org/abs/2309.11497 代码链接&#xff1a;https://github.com/ChenyangSi/FreeU 项目链接&#xff1a;https://chenyangsi.top/FreeU/&#xff08;CVPR2024) Abstract 在本文中&#xff0c;…

python3.10.4——windows环境安装

python下载官网&#xff1a;https://www.python.org/downloads/ 如果安装在C盘&#xff0c;需要右键→选择“以管理员身份运行” 勾选2个按钮&#xff0c;选择自定义安装 全部选择&#xff0c;点击Next 更改安装路径 命令行检查python是否安装成功&#xff1a; 出现版本号说明…

web前端学习笔记Day02

web学习Day02 一、页面布局 盒子模型 盒子将页面的所有标签都包含在了一个矩形区域content(内容区域)->padding(内边距区域)->border(边框区域)->margin(外边距区域) div标签: 一行只能显示一个&#xff08;独占一行&#xff09;width默认为父元素宽度&#xff0c…

21k star 开源项目,让模糊图像秒变高清!

不知道大家有没有遇到这样的需求&#xff1a;电脑里有一些很久之前保存的好看的图片&#xff0c;但是因为分辨率不高&#xff0c;当做壁纸使用会变得模糊。或者是从网上下载的需要使用的图片&#xff0c;找不到更高清的版本导致使用效果不好。之前分享过基于 Real-ESRGAN 算法修…

安全与便捷并行,打造高效易用的用户支付体验

在当今数字时代&#xff0c;快捷、安全的支付方式已经成为用户日常生活中不可或缺的一部分。不论是在线购物、订阅服务&#xff0c;还是线下消费&#xff0c;用户都期望享受流畅且安全的支付体验。作为开发者&#xff0c;选择适合的支付服务不仅关乎用户体验&#xff0c;更直接…