python-NLP:1中文分词

文章目录

  • 规则分词
    • 正向最大匹配法
    • 逆向最大匹配法
    • 双向最大匹配法
  • 统计分词
    • 语言模型
    • HMM模型
  • jieba分词
    • 分词
    • 关键词提取
    • 词性标注


规则分词

  基于规则的分词是一种机械分词方法,主要是通过维护词典,在切分语句时,将语句的每个字符串与词表中的词进行逐一匹配,找到则切分,否则不予切分。
  按照匹配切分的方式,主要有正向最大匹配法、逆向最大匹配法以及双向最大匹配法三种方法。

正向最大匹配法

  基本思想为:假设分词词典中的最长词有i个汉字字符,则用被处理文档的当前字串中的前i个字作为匹配字段,查找字典。若字典中存在这样的一个i字词,则匹配成功,匹配字段被作为一个词切分出来。如果词典中找不到这样的一个i字词,则匹配失败,将匹配字段中的最后一个字去掉,对剩下的字串重新进行匹配处理。如此进行下去,直到匹配成功,即切分出一个词或剩余字串的长度为零为止。这样就完成了一轮匹配,然后取下一个i字字串进行匹配处理,直到文档被扫描完为止。
  其算法描述如下:
  1)从左向右取待切分汉语句的m个字符作为匹配字段,m为机器词典中最长词条的字符数。
  2)查找机器词典并进行匹配。若匹配成功,则将这个匹配字段作为一个词切分出来。若匹配不成功,则将这个匹配字段的最后一个字去掉,剩下的字符串作为新的匹配字段,进行再次匹配,重复以上过程,直到切分出所有词为止。
  比如我们现在有个词典,最长词的长度为5,词典中存在“南京市长”和“长江大桥”两个词。现采用正向最大匹配对句子“南京市长江大桥”进行分词,那么首先从句子中取出前五个字“南京市长江”,发现词典中没有该词,于是缩小长度,取前4个字“南京、市长”,词典中存在该词,于是该词被确认切分。再将剩下的“江大桥”按照同样方式切分,得到“江”“大桥”,最终分为“南京市长”“江”“大桥”3个词。显然,这种结果还不是我们想要的。

#正向最大匹配
class MM(object):def __init__(self, dic_path):self.dictionary = set()self.maximum = 0#读取词典with open(dic_path, 'r', encoding='utf8') as f:for line in f:line = line.strip()if not line:continueself.dictionary.add(line)if len(line) > self.maximum:self.maximum = len(line)def cut(self, text):result = []index = 0while index <len(text):word = Nonefor size in range(self.maximum, 0, -1):#先选取最长词,然后-1....if index + size > len(text): #当前索引+size>文本长度continue#退出本次for循环,不执行下面代码。执行size-1piece = text[index:index+size]#匹配的字段if piece in self.dictionary:#匹配成功word = pieceresult.append(word)index += size #break#退出for循环if word is None:index += 1return result[::]def main():text = "南京市长江大桥"tokenizer =MM('大桥文本.txt')print(tokenizer.cut(text))main()

运行结果
[‘南京市长’, ‘大桥’]

逆向最大匹配法

  逆向最大匹配(ReverseMaximum Match Method,RMM法)的基本原理与MM法相同,不同的是分词切分的方向与MM法相反。逆向最大匹配法从被处理文档的末端开始匹配扫描,每次取最末端的i个字符(i为词典中最长词数)作为匹配字段,若匹配失败,则去掉匹配字段最前面的一个字,继续匹配。相应地,它使用的分词词典是逆序词典,其中的每个词条都将按逆序方式存放。在实际处理时,先将文档进行倒排处理,生成逆序文档。然后,根据逆序词典,对逆序文档用正向最大匹配法处理即可。
  由于汉语中偏正结构较多,若从后向前匹配,可以适当提高精确度。所以,逆向最大匹配法比正向最大匹配法的误差要小。统计结果表明,单纯使用正向最大匹配的错误率为1/169,单纯使用逆向最大匹配的错误率为1/245。比如之前的“南京市长江大桥”,按照逆向最大匹配,最终得到“南京市”“长江大桥”。当然,如此切分并不代表完全正确,可能有个叫“江大桥”的“南京市长”也说不定。

# 逆向最大匹配
class IMM(object):def __init__(self, dic_path):self.dictionary = set()self.maximum = 0# 读取词典with open(dic_path, 'r', encoding='utf8') as f:for line in f:line = line.strip()if not line:continueself.dictionary.add(line)if len(line) > self.maximum:self.maximum = len(line)def cut(self, text):result = []index = len(text)while index > 0:word = Nonefor size in range(self.maximum, 0, -1):if index - size < 0:continuepiece = text[(index - size):index]if piece in self.dictionary:word = pieceresult.append(word)index -= sizebreakif word is None:index -= 1return result[::-1]def main():text = "南京市长江大桥"tokenizer = IMM('大桥文本.txt')print(tokenizer.cut(text))
main()

运行结果
[‘南京市’, ‘长江大桥’]

双向最大匹配法

  双向最大匹配法(Bi-directction Matching method)是将正向最大匹配法得到的分词结果和逆向最大匹配法得到的结果进行比较,然后按照最大匹配原则,选取词数切分最少的作为结果。据SunM.S.和Benjamin K.T.(1995)的研究表明,中文中90.0%左右的句子,正向最大匹配法和逆向最大匹配法完全重合且正确,只有大概9.0%的句子两种切分方法得到的结果不一样,但其中必有一个是正确的(歧义检测成功),只有不到1.0%的句子,使用正向最大匹配法和逆向最大匹配法的切分虽重合却是错的,或者正向最大匹配法和逆向最大匹配法切分不同但两个都不对(歧义检测失败)。这正是双向最大匹配法在实用中文信息处理系统中得以广泛使用的原因。
  前面举例的“南京市长江大桥”,采用该方法,中间产生“南京市/长江/大桥”和“南京市/长江大桥”两种结果,最终选取词数较少的“南京市/长江大桥”这一结果。

统计分词

  随着大规模语料库的建立,统计机器学习方法的研究和发展,基于统计的中文分词算法渐渐成为主流。
  其主要思想是把每个词看做是由词的最小单位的各个字组成的,如果相连的字在不同的文本中出现的次数越多,就证明这相连的字很可能就是一个词。因此我们就可以利用字与字相邻出现的频率来反应成词的可靠度,统计语料中相邻共现的各个字的组合的频度,当组合频度高于某一个临界值时,我们便可认为此字组可能会构成一个词语。
  基于统计的分词,一般要做如下两步操作:
  1)建立统计语言模型。
  2)对句子进行单词划分,然后对划分结果进行概率计算,获得概率最大的分词方式。这里就用到了统计学习算法,如隐含马尔可夫(HMM)、条件随机场(CRF)等。
  下面针对其中的一些相关技术做简要介绍。

语言模型

  语言模型在信息检索、机器翻译、语音识别中承担着重要的任务。用概率论的专业术语描述语言模型就是:为长度为m的字符串确定其概率分布P(ω1, ω2,*…,∞m),其中ω1到ωm依次表示文本中的各个词语。一般采用链式法则计算其概率值,如式所示:

  观察上式易知,当文本过长时,公式右部从第三项起的每一项计算难度都很大。为解决该问题,有人提出n元模型(n-gram model)降低该计算难度。所谓n元模型就是在估算条件概率时,忽略距离大于等于n的上文词的影响,因此 P(ω¡|ω1,ω₂,…,ωi-1) 的计算可简化为:

  当n=1时称为一元模型(unigrammodel),此时整个句子的概率可表示为:P(ω),ω2,0m) = P(ω1)P(w2)…P(ωm)观察可知,在一元语言模型中,整个句子的概率等于各个词语概率的乘积。言下之意就是各个词之间都是相互独立的,这无疑是完全损失了句中的词序信息。所以一元模型的效果并不理想。
  当n=2时称为二元模型(bigram model),变为P(ωi|ω1,ω2,…,ωi-1)=P(ω¡|W¡-1)。当n=3时称为三元模型(trigram model),变为 P(ω¡|ω1,ω2, …", ωi-1) =P(w¡|W¡-2,ωi-1)。显然当n≥2时,该模型是可以保留一定的词序信息的,而且n越大,保留的词序信息越丰富,但计算成本也呈指数级增长。一般使用频率计数的比例来计算n元条件概率,如式所示:

  式中 count(ωi-(n-1), …, ωi-1) 表示词语ω i-(n-1), …, ωi-1在语料库中出现的总次数。
  由此可见,当n越大时,模型包含的词序信息越丰富,同时计算量随之增大。与此同时,长度越长的文本序列出现的次数也会减少,如按照上式估计n元条件概率时,就会出现分子分母为零的情况。因此,一般在n元模型中需要配合相应的平滑算法解决该问题,如拉普拉斯平滑算法等。

HMM模型

  隐含马尔可夫模型(HMM)是将分词作为字在字串中的序列标注任务来实现的。其基本思路是:每个字在构造一个特定的词语时都占据着一个确定的构词位置(即词位),现规定每个字最多只有四个构词位置:即B(词首)、M(词中)、E(词尾)和S(单独成词),那么下面句子1)的分词结果就可以直接表示成如2)所示的逐字标注形式:
  1)中文/分词/是/文本处理/不可或缺/的/一步!
  2)中/B文/E分/B词/E是/S文/B本/M处/M理/E不/B可/M或/M缺/E的/S一/B步/E!/S

----
class HMM(object):def __init__(self):"""方法:初始化参数"""import os# 主要是用于存取算法中间结果,不用每次都训练模型self.model_file = 'hmm_model.pkl'# 状态值集合self.state_list = ['B', 'M', 'E', 'S']# 参数加载,用于判断是否需要重新加载model_fileself.load_para = Falsedef try_load_model(self, trained):"""方法:用于加载已计算的中间结果,当需要重新训练时,需初始化清空结果输入:trained :是否已经训练好"""if trained:import picklewith open(self.model_file, 'rb') as f:self.A_dic = pickle.load(f)self.B_dic = pickle.load(f)self.Pi_dic = pickle.load(f)self.load_para = Trueelse:# 状态转移概率(状态->状态的条件概率)self.A_dic = {}# 发射概率(状态->词语的条件概率)self.B_dic = {}# 状态的初始概率self.Pi_dic = {}self.load_para = Falsedef train(self, path):"""方法:计算转移概率、发射概率以及初始概率输入:path:训练材料路径"""# 重置几个概率矩阵self.try_load_model(False)# 统计状态出现次数,求p(o)Count_dic = {}# 初始化参数def init_parameters():for state in self.state_list:self.A_dic[state] = {s: 0.0 for s in self.state_list}self.Pi_dic[state] = 0.0self.B_dic[state] = {}Count_dic[state] = 0def makeLabel(text):"""方法:为训练材料每个词划BMES输入:text:一个词输出:out_text:划好的一个BMES列表"""out_text = []if len(text) == 1:out_text.append('S')else:out_text += ['B'] + ['M'] * (len(text) - 2) + ['E']return out_textinit_parameters()line_num = -1# 观察者集合,主要是字以及标点等words = set()with open(path, encoding='utf8') as f:for line in f:line_num += 1line = line.strip()if not line:continueword_list = [i for i in line if i != ' ']words |= set(word_list)  # 更新字的集合linelist = line.split()line_state = []for w in linelist:line_state.extend(makeLabel(w))assert len(word_list) == len(line_state)for k, v in enumerate(line_state):Count_dic[v] += 1if k == 0:self.Pi_dic[v] += 1  # 每个句子的第一个字的状态,用于计算初始状态概率else:self.A_dic[line_state[k - 1]][v] += 1  # 计算转移概率self.B_dic[line_state[k]][word_list[k]] = \self.B_dic[line_state[k]].get(word_list[k], 0) + 1.0  # 计算发射概率self.Pi_dic = {k: v * 1.0 / line_num for k, v in self.Pi_dic.items()}self.A_dic = {k: {k1: v1 / Count_dic[k] for k1, v1 in v.items()}for k, v in self.A_dic.items()}# 加1平滑self.B_dic = {k: {k1: (v1 + 1) / Count_dic[k] for k1, v1 in v.items()}for k, v in self.B_dic.items()}# 序列化import picklewith open(self.model_file, 'wb') as f:pickle.dump(self.A_dic, f)pickle.dump(self.B_dic, f)pickle.dump(self.Pi_dic, f)return selfdef viterbi(self, text, states, start_p, trans_p, emit_p):"""方法:维特比算法,寻找最优路径,即最大可能的分词方案输入:text:文本states:状态集start_p:第一个字的各状态的可能trans_p:转移概率emit_p:发射概率输出:prob:概率path:划分方案"""V = [{}]  # 路径图path = {}for y in states:  # 初始化第一个字的各状态的可能性V[0][y] = start_p[y] * emit_p[y].get(text[0], 0)path[y] = [y]for t in range(1, len(text)):  # 每一个字V.append({})newpath = {}# 检验训练的发射概率矩阵中是否有该字neverSeen = text[t] not in emit_p['S'].keys() and \text[t] not in emit_p['M'].keys() and \text[t] not in emit_p['E'].keys() and \text[t] not in emit_p['B'].keys()for y in states:  # 每个字的每个状态的可能emitP = emit_p[y].get(text[t], 0) if not neverSeen else 1.0  # 设置未知字单独成词# y0上一个字可能的状态,然后算出当前字最可能的状态,prob则是最大可能,state是上一个字的状态(prob, state) = max([(V[t - 1][y0] * trans_p[y0].get(y, 0) *emitP, y0)for y0 in states if V[t - 1][y0] > 0])V[t][y] = probnewpath[y] = path[state] + [y]  # 更新路径path = newpathif emit_p['M'].get(text[-1], 0) > emit_p['S'].get(text[-1], 0):  # 最后一个字是词中的可能大于单独成词的可能(prob, state) = max([(V[len(text) - 1][y], y) for y in ('E', 'M')])else:  # 否则就直接选最大可能的那条路(prob, state) = max([(V[len(text) - 1][y], y) for y in states])return (prob, path[state])# 用维特比算法分词,并输出def cut(self, text):import osif not self.load_para:self.try_load_model(os.path.exists(self.model_file))prob, pos_list = self.viterbi(text, self.state_list, self.Pi_dic, self.A_dic, self.B_dic)begin, next = 0, 0for i, char in enumerate(text):pos = pos_list[i]if pos == 'B':begin = ielif pos == 'E':yield text[begin: i + 1]next = i + 1elif pos == 'S':yield charnext = i + 1if next < len(text):yield text[next:]hmm = HMM()
hmm.train('HMM模型训练.txt')text = '南京市长江大桥'
res = hmm.cut(text)
print(text)
print(str(list(res)))

HMM训练数据集

jieba分词

分词

import jiebasent = '中文分词是文本处理不可或缺的一步!'
seg_list = jieba.cut(sent, cut_all=True)
print('全模式:', '/ ' .join(seg_list)) 
seg_list = jieba.cut(sent, cut_all=False)
print('精确模式:', '/ '.join(seg_list)) 
seg_list = jieba.cut(sent)  
print('默认精确模式:', '/ '.join(seg_list))
seg_list = jieba.cut_for_search(sent)  
print('搜索引擎模式', '/ '.join(seg_list))import jieba.posseg as psg
sent = '中文分词是文本处理不可或缺的一步!'
seg_list = psg.cut(sent)#标注词性
print(' '.join(['{0}/{1}'.format(w, t) for w, t in seg_list]))

运行结果

加载自定义词典

import jiebasent = 'jieba分词非常好用,可以自定义金融词典!'
seg_list = jieba.cut(sent)
print('加载词典前:', '/ '.join(seg_list))jieba.load_userdict('user_dict.txt')
seg_list = jieba.cut(sent)
print('加载词典后:', '/ '.join(seg_list))

关键词提取

  关键词提取使用jieba中的analyse模块,基于两种不同的算法,提供了两个不同的方法。
  1.基于TF-IDF算法的关键词提取

from jieba import analysetest_content="""
变压器中性点的接地方式变化后其保护应相应调整,即是变压器中性点接地运行时,投入中性点零序过流保护,停用中性点零序过压保护及间隔零序过流保护;变压器中性点不接地运行时,投入中性点零序过压保护及间隔零序保护,停用中性点零序过流保护,否则有可能造成保护误动作。
"""
key_word = analyse.extract_tags(test_content, topK=5)
print('[key_word]:', list(key_word))
key_word = analyse.extract_tags(test_content, topK=5, withWeight=True)
print('[key_word]:', list(key_word))
key_word = analyse.extract_tags(test_content, topK=5, withWeight=True,allowPOS="n")
print('[key_word]:', list(key_word))

  extract_tags()方法有四个参数,sentence为待提取的文本;topK为返回最大权重关键词的个数,默认值为20;withWeight表示是否返回权重,是的话返回(word, weight)的list,默认为False;allowPOS为筛选指定词性的词,默认为空,即不筛选。

  2.基于TextRank算法的关键词提取

from jieba import analysetest_content="""
变压器中性点的接地方式变化后其保护应相应调整,即是变压器中性点接地运行时,投入中性点零序过流保护,停用中性点零序过压保护及间隔零序过流保护;变压器中性点不接地运行时,投入中性点零序过压保护及间隔零序保护,停用中性点零序过流保护,否则有可能造成保护误动作。
"""
key_word = analyse.textrank(test_content, topK=3)
print('[key_word]:', list(key_word))
allow = ['ns', 'n', 'vn', 'v', 'a', 'm', 'c']
key_word = analyse.textrank(test_content, topK=3, allowPOS=allow)
print('[key_word]:', list(key_word))

  textrank()方法与extract_tags()方法用法相似,需要注意的是allowPOS有默认值(‘ns’, ‘n’, ‘vn’, ‘v’),默认筛选这四种词性的词,可以自己设置。其他参数都与extract_tags()方法相同。

词性标注

  词性标注使用jieba中的posseg模块,标注分词后每个词的词性,采用和ictclas兼容的标记法。

from jieba import posseg
test_content="""
变压器停、送电操作时,应先将该变压器中性点接地,对于调度要求不接地的变压器,在投入系统后应拉开中性点接地刀闸。
"""
pos_word = posseg.lcut(test_content)
print(pos_word)

[pair(‘\n’, ‘x’), pair(‘变压器’, ‘n’), pair(‘停’, ‘v’), pair(‘、’, ‘x’), pair(‘送电’, ‘v’), pair(‘操作’, ‘v’), pair(‘时’, ‘n’), pair(‘,’, ‘x’), pair(‘应先’, ‘vn’), pair(‘将’, ‘d’), pair(‘该’, ‘r’), pair(‘变压器’, ‘n’), pair(‘中性点’, ‘n’), pair(‘接地’, ‘v’), pair(‘,’, ‘x’), pair(‘对于’, ‘p’), pair(‘调度’, ‘n’), pair(‘要求’, ‘v’), pair(‘不’, ‘d’), pair(‘接地’, ‘v’), pair(‘的’, ‘uj’), pair(‘变压器’, ‘n’), pair(‘,’, ‘x’), pair(‘在’, ‘p’), pair(‘投入’, ‘v’), pair(‘系统’, ‘n’), pair(‘后’, ‘f’), pair(‘应’, ‘v’), pair(‘拉开’, ‘v’), pair(‘中性点’, ‘n’), pair(‘接地’, ‘v’), pair(‘刀闸’, ‘n’), pair(‘。’, ‘x’), pair(‘\n’, ‘x’)]

posseg.lcut()有两个参数,sentence和HMM。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/383106.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

很酷的仿真翻页书HTML源码,书本页面是加载的图片,基于JQuery实现的翻页特效,结合一些js插件,看起来很酷,在实现在线翻书项目。

仿真翻页书HTML源码https://www.bootstrapmb.com/item/14742 创建一个仿真的翻页书效果在HTML和CSS中可以通过多种方式实现&#xff0c;但通常这也会涉及到JavaScript&#xff08;或jQuery&#xff09;来处理交互和动画。以下是一个简单的示例&#xff0c;展示如何使用HTML、…

【GoLang】Golang 快速入门(第一篇)

目录 1.简介&#xff1a; 2.设计初衷&#xff1a; 3.Go语言的 特点 4.应用领域: 5.用go语言的公司&#xff1a; 6. 开发工具介绍以及环境搭建 1.工具介绍: 2.VSCode的安装: 3.安装过程&#xff1a; 4.Windows下搭建Go开发环境--安装和配置SDK 1.搭建Go开发环境 - 安装…

SQUID - 形状条件下的基于分子片段的3D分子生成等变模型 评测

SQUID 是一个形状条件下基于片段的3D分子生成模型&#xff0c;给一个3D参考分子&#xff0c;SQUID 可以根据参考分子的形状&#xff0c;基于片段库&#xff0c;生成与参考分子形状非常相似的分子。 SQUID 模型来自于 ICLR 2023 文章&#xff08;2022年10月6日提交&#xff09;&…

【iOS】isMemberOfClassisKindOfClass

目录 前言class方法isMemberOfClass和isKindOfClass实例方法分析类方法分析 实例验证总结 前言 认识这两个方法之前&#xff0c;首先要了解isa指向流程和继承链&#xff08;【iOS】类对象的结构分析&#xff09;关系&#xff0c;以便理解得更透彻 上经典图&#xff1a; 要注意…

动态代理更改Java方法的返回参数(可用于优化feign调用后R对象的统一处理)

动态代理更改Java方法的返回参数&#xff08;可用于优化feign调用后R对象的统一处理&#xff09; 需求原始解决方案优化后方案1.首先创建AfterInterface.java2.创建InvocationHandler处理代理方法3. 调用 实际运行场景拓展 需求 某些场景&#xff0c;调用别人的方法&#xff0…

深入浅出WebRTC—DelayBasedBwe

WebRTC 中的带宽估计是其拥塞控制机制的核心组成部分&#xff0c;基于延迟的带宽估计是其中的一种策略&#xff0c;它主要基于延迟变化推断出可用的网络带宽。 1. 总体架构 1.1. 静态结构 1&#xff09;DelayBasedBwe 受 GoogCcNetworkController 控制&#xff0c;接收其输入…

贪心算法(算法篇)

算法之贪心算法 贪心算法 概念&#xff1a; 贪心算法是一种思想&#xff0c;并不是一种算法&#xff0c;贪心算法是分阶段地工作&#xff0c;在每一个阶段&#xff0c;可以认为所作决定是好的&#xff0c;而不考虑将来地后果。算法的每个阶段总是选择当前阶段最优&#xff0…

Kafka Producer之数据重复和乱序问题

文章目录 1. 数据重复2. 数据乱序 为了可靠性&#xff0c;Kafka有消息重试机制&#xff0c;但是同时也带来了2大问题 1. 数据重复 消息发送到broker后&#xff0c;broker记录消息数据到log中&#xff0c;但是由于网络问题&#xff0c;producer没有收到acks&#xff0c;于是再次…

Axure设计之轮播图(动态面板+中继器)

轮播图&#xff08;Carousel&#xff09;是一种网页或应用界面中常见的组件&#xff0c;用于展示一系列的图片或内容&#xff0c;通常通过自动播放或用户交互&#xff08;如点击箭头按钮&#xff09;来切换展示不同的内容。轮播图能够吸引用户的注意力&#xff0c;有效展示重要…

新手小白的pytorch学习第十一弹-----Computer Vision创建基础模型使用FashionMNIST

目录 PyTorch Computer Vision0 PyTorch 中 Computer vision 的库1 获得一个数据集1.1 查看数据的输入和输出形状1.2 可视化数据 2 准备 DataLoader3 Model 0: 创建一个 baseline model3.1 设置损失函数、优化器和评估指标3.2 创建一个函数来给我们的实验计时3.3 在批量数据集上…

萝卜快跑:自动驾驶的先锋与挑战

萝卜快跑&#xff1a;自动驾驶的先锋与挑战 近段时间&#xff0c;由萝卜快跑引发的自动驾驶事件如火如荼&#xff0c;成为科技领域的热门话题。萝卜快跑作为自动驾驶领域的重要参与者&#xff0c;其最新事件引发了广泛的关注和讨论。 萝卜快跑是百度推出的自动驾驶出行服务平台…

20240724-然后用idea创建一个Java项目/配置maven环境/本地仓储配置

1.创建一个java项目 &#xff08;1&#xff09;点击页面的create project&#xff0c;然后next &#xff08;2&#xff09;不勾选&#xff0c;继续next &#xff08;3&#xff09;选择新项目名称&#xff0c;新项目路径&#xff0c;然后Finsh&#xff0c;在新打开的页面选择…

Hadoop、Hive、HBase、数据集成、Scala阶段测试

姓名&#xff1a; 总分&#xff1a;Hadoop、Hive、HBase、数据集成、Scala阶段测试 一、选择题&#xff08;共20道&#xff0c;每道0.5分&#xff09; 1、下面哪个程序负责HDFS数据存储&#xff08; C &#xff09; A. NameNode B. Jobtracher C. DataNode D. Sec…

鸿蒙界面开发

界面开发 //构建 → 界面 build() {//行Row(){//列Column(){//文本 函数名(参数) 对象.方法名&#xff08;参数&#xff09; 枚举名.变量名Text(this.message).fontSize(40)//设置文本大小.fontWeight(FontWeight.Bold)//设置文本粗细.fontColor(#ff2152)//设置文本颜色}.widt…

3.JAVA-IDEA

IDEA介绍 下载安装 实际操作 免费试用&#xff0c;可以选第一个自己找到密匙开锁 首先新建project项目 建立空项目 起名并存储位置选择 确定创建项目 成功新建项目&#xff0c;开始新建模块 新建或导入模块 新建java模块 修改名称&#xff0c;位置保持默认 同样yes建立 ok即可 …

2 YOLO8的使用

1 介绍 YOLOv8是YOLO (You Only Look Once) 目标检测模型系列的最新版本&#xff0c;由Ultralytics公司开发和维护。YOLOv8是在先前版本的基础上进行的重大更新&#xff0c;不仅提升了性能&#xff0c;还增加了更多的功能&#xff0c;它不仅能够进行目标检测&#xff0c;还能完…

职业教育综合布线实验实训室建设应用案例

在信息技术迅猛发展的今天&#xff0c;综合布线技术已成为智能建筑、数据中心等基础设施不可或缺的一部分。唯众&#xff0c;作为职业教育领域的先行者&#xff0c;早在多年前便洞悉行业趋势&#xff0c;率先涉足综合布线实训室的建设&#xff0c;凭借丰富的经验和持续的创新&a…

phpstorm配置xdebug3

查看php路径相关信息 php --ini安装xdebug https://www.jetbrains.com/help/phpstorm/2024.1/configuring-xdebug.html?php.debugging.xdebug.configure php.ini 配置 在最后添加&#xff0c;以下是我的配置 [xdebug] zend_extension/opt/homebrew/Cellar/php8.1/8.1.29/p…

决策树 和 集成学习、随机森林

决策树是非参数学习算法&#xff0c;可以解决分类问题&#xff0c;天然可以解决多分类问题&#xff08;不同于逻辑回归或者SVM&#xff0c;需要通过OVR&#xff0c;OVO的方法&#xff09;&#xff0c;也可以解决回归问题&#xff0c;甚至是多输出任务&#xff0c;并且决策树有非…

【北京迅为】《i.MX8MM嵌入式Linux开发指南》-第三篇 嵌入式Linux驱动开发篇-第五十一章 添加设备树节点

i.MX8MM处理器采用了先进的14LPCFinFET工艺&#xff0c;提供更快的速度和更高的电源效率;四核Cortex-A53&#xff0c;单核Cortex-M4&#xff0c;多达五个内核 &#xff0c;主频高达1.8GHz&#xff0c;2G DDR4内存、8G EMMC存储。千兆工业级以太网、MIPI-DSI、USB HOST、WIFI/BT…