《Java初阶数据结构》----6.<优先级队列之PriorityQueue底层:堆>

前言

      大家好,我目前在学习java。之前也学了一段时间,但是没有发布博客。时间过的真的很快。我会利用好这个暑假,来复习之前学过的内容,并整理好之前写过的博客进行发布。如果博客中有错误或者没有读懂的地方。热烈欢迎大家在评论区进行讨论!!!

      喜欢我文章的兄弟姐妹们可以点赞,收藏和评论我的文章。喜欢我的兄弟姐妹们以及也想复习一遍java知识的兄弟姐妹们可以关注我呦,我会持续更新滴,
     望支持!!!!!!一起加油呀!!!!

语言只是工具,不能决定你好不好找工作,决定你好不好找工作的是你的能力!!!!!

学历本科及以上就够用了!!!!!!!!!!!!!!!!!!!!!!


本篇博客主要讲解Java基础语法中的

堆的概念及实现、堆的性质、堆的创建、堆的插入与删除、堆的应用。

下一篇文章我们会重点将优先级队列


一、优先级队列

1.1什么是优先级队列

        前面我们了解过队列是一种先进先出(FIFO)的数据结构。但有些情况下,操作的数据可能带有优先级,一般出队列时,可能需要优先级高的元素先出队列。此时普通队列就不适用了。因此我们引入优先级队列。

数据结构应该提供两个最基本的操作,一个是返回最高优先级对象一个是添加新的对象。这种数据结构就是优先级队列(Priority Queue)。

 1.2优先级队列的实现

JDK1.8中的PriorityQueue底层使用了这种数据结构

堆:实际就是在完全二叉树的基础上进行了一些调整。

二、堆

2.1堆的概念 

如果有一个关键码的集合K = {k0,k1, k2,…,kn-1},把它的所有元素按完全二叉树的顺序存储方式存储在一 个一维数组中,并满足: Ki <=  K2i+1 且 Ki <= K2i+2( Ki >=  K2i+1 且 Ki >= K2i+2) i = 0,1,2…,则称为 小堆(或大堆)。将根节点最大的堆叫做最大堆大根堆,根节点最小的堆叫做最小堆小根堆

2.2堆的性质

堆的性质:

  • 堆中某个节点的值总是不大于或不小于其父节点的值;
  • 堆总是一棵完全二叉树。 

2.3 堆的存储方式

从堆的概念可知,堆是一棵完全二叉树,因此可以层序的规则采用顺序的方式来高效存储, 

注意:对于非完全二叉树,则不适合使用顺序方式进行存储,因为为了能够还原二叉树,空间中必须要存储空节 点,就会导致空间利用率比较低。

将元素存储到数组中后,可以根据二叉树章节的性质5对树进行还原。假设i为节点在数组中的下标,则有:

  • 如果i为0,则i表示的节点为根节点,否则i节点的双亲节点为 (i - 1)/2
  • 如果2 * i + 1 小于节点个数,则节点i的左孩子下标为2 * i + 1,否则没有左孩子
  • 如果2 * i + 2 小于节点个数,则节点i的右孩子下标为2 * i + 2,否则没有右孩子 

2.4 堆的创建

2.4.1 堆向下调整

根节点的左右子树满足堆的特性(创建堆)

对于集合{ 27,15,19,18,28,34,65,49,25,37 }中的数据,如果将其创建成堆呢?

仔细观察上图后发现:根节点的左右子树已经完全满足堆的性质,因此只需将根节点向下调整好即可。

向下过程(以小堆为例):

1. 让parent标记需要调整的节点,child标记parent的左孩子(注意:parent如果有孩子一定先是有左孩子)

2. 如果parent的左孩子存在,即:child < size, 进行以下操作,直到parent的左孩子不存在

parent右孩子是否存在,存在找到左右孩子中最小的孩子,让child进行标

将parent与较小的孩子child比较,

如果:

  • parent小于较小的孩子child,调整结束
  • 否则:交换parent与较小的孩子child,交换完成之后,parent中大的元素向下移动,可能导致子 树不满足对的性质,因此需要继续向下调整,即parent = child;child = parent*2+1; 然后继续2。

代码实现

public void shiftDown(int[] array, int parent) {// child先标记parent的左孩子,因为parent可能右左没有右int child = 2 * parent + 1;int size = array.length;while (child < size) {// 如果右孩子存在,找到左右孩子中较小的孩子,用child进行标记if(child+1 < size && array[child+1] < array[child]){child += 1;}// 如果双亲比其最小的孩子还小,说明该结构已经满足堆的特性了if (array[parent] <= array[child]) {break;}else{// 将双亲与较小的孩子交换int t = array[parent];array[parent] = array[child];array[child] = t;// parent中大的元素往下移动,可能会造成子树不满足堆的性质,因此需要继续向下调整parent = child;child = parent * 2 + 1;}}
}

注意:在调整以parent为根的二叉树时,必须要满足parent的左子树和右子树已经是堆了才可以向下调整。 时间复杂度分析:

最坏的情况即图示的情况,从根一路比较到叶子,比较的次数为完全二叉树的高度,即时间复杂度为O(logN)  

2.4.2根节点的左右子树不满足堆的特性(创建堆)

那对于普通的序列{ 1,5,3,8,7,6 },即根节点的左右子树不满足堆的特性,又该如何调整呢?

代码示例 

public static void createHeap(int[] array) {// 找倒数第一个非叶子节点,从该节点位置开始往前一直到根节点,遇到一个节点,应用向下调整int root = ((array.length-2)>>1);for (; root >= 0; root--) {shiftDown(array, root);}
}

2.4.3 建堆的时间复杂度 

因为堆是完全二叉树,而满二叉树也是完全二叉树,此处为了简化使用满二叉树来证明(时间复杂度本来看的就是 近似值,多几个节点不影响最终结果):

因此:建堆的时间复杂度为O(N)。

2.5 堆的插入与删除

2.5.1 堆的插入

堆的插入总共需要两个步骤:

1. 先将元素放入到底层空间中(注意:空间不够时需要扩容)

2. 将最后新插入的节点向上调整,直到满足堆的性质

代码实现

public void shiftUp(int child) {// 找到child的双亲int parent = (child - 1) / 2;while (child > 0) {// 如果双亲比孩子大,parent满足堆的性质,调整结束if (array[parent] > array[child]) {break;}else{// 将双亲与孩子节点进行交换 int t = array[parent];array[parent] = array[child];array[child] = t;// 小的元素向下移动,可能到值子树不满足对的性质,因此需要继续向上调增child = parent;parent = (child - 1) / 1;}}
}

2.5.2 堆的删除 

注意:堆的删除一定删除的是堆顶元素。具体如下:

1. 将堆顶元素对堆中最后一个元素交换

2. 将堆中有效数据个数减少一个

3. 对堆顶元素进行向下调整

2.5用堆模拟优先级队列

public class MyPriorityQueue {// 演示作用,不再考虑扩容部分的代码private int[] array = new int[100];private int size = 0;public void offer(int e) {array[size++] = e;shiftUp(size - 1);}public int poll() {int oldValue = array[0];array[0] = array[--size];shiftDown(0);return oldValue;}public int peek() {return array[0];}
}

三、堆的应用

3.1 PriorityQueue的实现

用堆作为底层结构封装优先级队列

3.2 堆排序

堆排序即利用堆的思想来进行排序,总共分为两个步骤:

①建堆

升序:建大堆

降序:建小堆

②利用堆删除思想来进行排序

建堆和堆删除中都用到了向下调整,因此掌握了向下调整,就可以完成堆排序。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/386146.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ProxmoxPVE虚拟化平台--安装PVE虚拟机

Proxmox 虚拟机 Proxmox是一个基于Debian Linux和KVM的虚拟化平台&#xff0c;‌它提供了虚拟化的环境&#xff0c;‌允许用户在同一台物理机上运行多个虚拟机。‌Proxmox虚拟环境&#xff08;‌PVE&#xff09;‌是一个开源项目&#xff0c;‌由Proxmox Server Solutions Gmb…

重生之我当程序猿外包

第一章 个人介绍与收入历程 我出生于1999年&#xff0c;在大四下学期进入了一家互联网公司实习。当时的实习工资是3500元&#xff0c;公司还提供住宿。作为一名实习生&#xff0c;这个工资足够支付生活开销&#xff0c;每个月还能给父母转1000元&#xff0c;自己留2500元用来吃…

科普文:万字详解Kafka基本原理和应用

一、Kafka 简介 1. 消息引擎系统ABC Apache Kafka是一款开源的消息引擎系统&#xff0c;也是一个分布式流处理平台。除此之外&#xff0c;Kafka还能够被用作分布式存储系统&#xff08;极少&#xff09;。 A. 常见的两种消息引擎系统传输协议&#xff08;即用什么方式把消息…

探索 Milvus 存储系统:如何评估和优化 Milvus 存储性能

欢迎来到探索 Milvus 系列。Milvus 是一款支持水平扩展和具备出色性能的开源向量数据库。Milvus 的核心是其强大的存储系统&#xff0c;是数据持久化和存储的关键基础。该系统包括几个关键组成部分&#xff1a;元数据存储&#xff08;meta storage&#xff09;、消息存储&#…

LexLIP——图片搜索中的多模态稀疏化召回方法

LexLIP——图片搜索中的多模态稀疏化召回方法 FesianXu 20240728 at WeChat Search Team 前言 最近笔者在回顾&笔记一些老论文&#xff0c;准备整理下之前看的一篇论文LexLIP&#xff0c;其很适合在真实的图片搜索业务场景中落地&#xff0c;希望笔记能给读者带来启发。如…

深度学习趋同性的量化探索:以多模态学习与联合嵌入为例

深度学习趋同性的量化探索&#xff1a;以多模态学习与联合嵌入为例 参考文献 据说是2024年最好的人工智能论文&#xff0c;是否有划时代的意义&#xff1f; [2405.07987] The Platonic Representation Hypothesis (arxiv.org) ​arxiv.org/abs/2405.07987 趋同性的量化表达 …

【2024蓝桥杯/C++/A组/零食采购】

题目 方法 最近公共祖先lca的倍增算法binary lifting 深度优先搜索 二进制模拟 代码 #include<bits/stdc.h> using namespace std;// 定义常量N const int N 1e510;// 边的集合 vector<int> edge[N]; // 每个节点对应的数值 int num[N]; // 父节点数组&#x…

VS code 与Pycharm 的使用区别(个人)

注明&#xff1a;本文从这开始VS code简称VS&#xff0c;Pycharm简称PY 安装包大小 VS:PY 1:0 安装后实际大小 vs py VS:PY 2:0 界面ui&#xff08;简易&#xff09; vs py VS:PY 2:1 启动速度 VS:PY 3:1 注&#xff1a;以上为个人测评&#xff0c;无特殊意图

DHCP笔记

DHCP---动态主机配置协议 作用&#xff1a;为终端动态提供IP地址&#xff0c;子网掩码&#xff0c;网关&#xff0c;DNS网址等信息 具体流程 报文抓包 在DHCP服务器分配iP地址之间会进行广播发送arp报文&#xff0c;接收IP地址的设备也会发送&#xff0c;防止其他设备已经使用…

Google Test 学习笔记(简称GTest)

文章目录 一、介绍1.1 介绍1.2 教程 二、使用2.1 基本使用2.1.1 安装GTest &#xff08;下载和编译&#xff09;2.1.2 编写测试2.1.3 运行测试2.1.4 高级特性2.1.5 调试和分析 2.2 源码自带测试用例2.3 TEST 使用2.3.1 TestCase的介绍2.3.2 TEST宏demo1demo2 2.3.3 TEST_F宏2.3…

【SOC 芯片设计 DFT 学习专栏 -- DFT OCC 与 ATPG的介绍】

请阅读【嵌入式及芯片开发学必备专栏】 请阅读【芯片设计 DFT 学习系列 】 如有侵权&#xff0c;请联系删除 转自&#xff1a; 简矽芯学堂 简矽芯学堂 2024年01月18日 09:00 陕西 文章目录 OCC 介绍Fast ScanFull chip ATPGPartition ATPGHierarchical ATPG OCC 介绍 OCC&am…

反激Flyback从逆向到初步设计(UC2844)

一.Flyback基本拓扑 国标gb/t 12325-2008《电能质量供电电压偏差》规定&#xff1a;220v单向供电电压偏差为标称电压的-10%&#xff0c;7%。 对应220V的标称电压&#xff0c;其浮动范围是在198~235.4V。以下运算均基于此规定进行。 首先220V进入EMI模块&#xff0c;消除差模干扰…

SSRF学习笔记

1.NAT学习 Nat&#xff08;Network Address Translation&#xff0c;网络地址转换&#xff09;是 一种网络通信技术主要用于将私有网络中的内部IP地址转换成公共网络中的公共IP地址&#xff0c;以实现局域网内部设备访问互联网的功能。具体来说&#xff0c;Nat有以下几个主要…

redis的学习

! 快速入门 安装 1.使用docker安装redis docker pull redisdocker run -d --name redis -p 6379:6379 --restart unless-stopped -v /etc/docker/Redis/data:/data -v /etc/docker/Redis/conf/redis.conf:/usr/local/etc/redis/redis.conf redis redis-server /usr/local/e…

小白也能读懂的ConvLSTM!(开源pytorch代码)

ConvLSTM 1. 算法简介与应用场景2. 算法原理2.1 LSTM基础2.2 ConvLSTM原理2.2.1 ConvLSTM的结构2.2.2 卷积操作的优点 2.3 LSTM与ConvLSTM的对比分析2.4 ConvLSTM的应用 3. PyTorch代码参考文献 仅需要网络源码的可以直接跳到末尾即可 1. 算法简介与应用场景 ConvLSTM&#x…

【漏洞复现】phpStudy 小皮 Windows面板 存在RCE漏洞

靶场资料后台自行领取【靶场】 image-20240726092307252 PhpStudy小皮面板曝RCE漏洞&#xff0c;本质是存储型XSS引发。攻击者通过登录用户名输入XSS代码&#xff0c;结合后台计划任务功能&#xff0c;实现远程代码执行&#xff0c;严重威胁服务器安全。建议立即更新至安全版…

OpenSSL SSL_connect: Connection was reset in connection to github.com:443

OpenSSL SSL_connect: Connection was reset in connection to github.com:443 目录 OpenSSL SSL_connect: Connection was reset in connection to github.com:443 【常见模块错误】 【解决方案】 欢迎来到英杰社区https://bbs.csdn.net/topics/617804998 欢迎来到我的主页&…

机器视觉12-相机

相机 作用: 工业相机 是 机器视觉系统 的重要组成部分 最本质的功能就是通过CCD或CMOS成 像传感器将镜头产生的光信号转变为 有序的电信号&#xff0c;并将这些信息通过相 应接口传送到计算机主机 工业相机分类 目前业内没有对相机进行明确的分类定义&#xff0c; 以下分类是…

正点原子 通用外设配置模型 GPIO配置步骤 NVIC配置

1. 这个是通用外设驱动模式配置 除了初始化是必须的 其他不是必须的 2. gpio配置步骤 1.使能时钟是相当于开电 2.设置工作模式是配置是输出还是输入 是上拉输入还是下拉输入还是浮空 是高速度还是低速度这些 3 和 4小点就是读写io口的状态了 3. 这个图是正点原子 将GPIO 的时…

鸿蒙开发—黑马云音乐之Music页面

目录 1.外层容器效果 2.信息区-发光效果 3.信息区-内容布局 4.播放列表布局 5.播放列表动态化 6.模拟器运行并配置权限 效果&#xff1a; 1.外层容器效果 Entry Component export struct MuiscPage {build() {Column() {// 信息区域Column() {}.width(100%)// .backgroun…