十大人工智能大模型技术的简介:
- 深度学习模型
- 深度学习是人工智能领域中一种重要的机器学习技术,通过构建深度神经网络来模拟人脑的认知过程。深度学习模型能够自动提取数据的特征,并在海量数据中进行学习和优化,从而在语音识别、图像处理、自然语言处理等领域取得了显著成果。
- 卷积神经网络(CNN)
- 卷积神经网络是一种专门用于处理图像数据的深度学习模型。它通过局部感知和分层的网络结构,能够有效地从原始图像中提取层次化的特征。在计算机视觉领域,CNN已经成为图像分类、目标检测、人脸识别等任务的主流方法。
- 循环神经网络(RNN)
- 循环神经网络是一种用于处理序列数据的神经网络模型。它通过记忆单元来保留历史信息,从而对序列数据进行有效的建模。RNN在自然语言处理领域有着广泛的应用,如语音识别、机器翻译和文本生成等。
- Transformer架构
- Transformer是一种基于自注意力机制的深度学习模型,由谷歌于2017年提出。它通过多层的自注意力机制和位置编码来捕捉输入数据的特征,并取得了在机器翻译、自然语言理解等领域的优异表现。Transformer已经成为现代自然语言处理领域的基础架构之一。
- 自注意力机制
- 自注意力机制是Transformer架构的核心组件之一,它允许模型在处理输入数据时关注不同的部分,并根据输入数据自动学习其表示方式。自注意力机制的引入提高了模型的表达能力和灵活性,使其能够更好地处理复杂的语言现象。
- 生成对抗网络(GAN)
- 生成对抗网络是一种用于生成新数据的深度学习模型。它由两个网络组成:生成器和判别器。生成器的任务是生成与真实数据尽可能相似的假数据,而判别器的任务是区分真实数据和假数据。GAN在图像生成、图像修复和风格转换等领域具有广泛的应用。
- 强化学习(RL)
- 强化学习是人工智能领域中一种基于试错学习的机器学习方法。智能体通过与环境交互并从环境中获得状态和奖励信号来学习如何最大化累积奖励。强化学习已在游戏、自动驾驶、机器人控制等领域取得重要成果。
- 迁移学习
- 迁移学习是一种利用已训练模型作为基础来训练新模型的机器学习方法。它通过将预训练模型中的参数迁移到新模型中,从而减少新模型训练的时间和数据需求。迁移学习在自然语言处理、计算机视觉等领域得到了广泛应用,成为了一种重要的机器学习技术。
- 集成学习
- 集成学习是一种通过构建多个模型的组合来提高预测精度和鲁棒性的机器学习方法。它通过将多个模型的预测结果进行综合来提高整体的预测性能。集成学习在分类、回归和异常检测等领域取得了良好的效果,常用的集成方法包括bagging和boosting等。
- 生成模型
- 生成模型是一种能够从已有的数据生成新数据的人工智能大模型技术。它通过对已有的数据进行学习,并从中提取出模式或结构,然后生成与原始数据相似的新数据。生成模型在文本生成、图像生成、语音合成等领域有着广泛的应用,例如:自动回复系统、机器翻译和虚拟助手等。
- 生成模型的典型代表是GPT系列模型,如GPT-3、GPT-4等。这些模型使用了大量的语言数据,并通过无监督学习和微调技术,来提升其生成的文本质量。GPT系列模型已经在许多领域展现出了强大的应用潜力,例如:自然语言处理、机器翻译、对话系统等。
如何系统的去学习大模型LLM ?
作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。
但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料
包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~
👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
阶段1:AI大模型时代的基础理解
- 目标:了解AI大模型的基本概念、发展历程和核心原理。
- 内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践 - L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
- 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
- 内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例 - L2.2 Prompt框架
- L2.2.1 什么是Prompt
- L2.2.2 Prompt框架应用现状
- L2.2.3 基于GPTAS的Prompt框架
- L2.2.4 Prompt框架与Thought
- L2.2.5 Prompt框架与提示词 - L2.3 流水线工程
- L2.3.1 流水线工程的概念
- L2.3.2 流水线工程的优点
- L2.3.3 流水线工程的应用 - L2.4 总结与展望
- L2.1 API接口
阶段3:AI大模型应用架构实践
- 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
- 内容:
- L3.1 Agent模型框架
- L3.1.1 Agent模型框架的设计理念
- L3.1.2 Agent模型框架的核心组件
- L3.1.3 Agent模型框架的实现细节 - L3.2 MetaGPT
- L3.2.1 MetaGPT的基本概念
- L3.2.2 MetaGPT的工作原理
- L3.2.3 MetaGPT的应用场景 - L3.3 ChatGLM
- L3.3.1 ChatGLM的特点
- L3.3.2 ChatGLM的开发环境
- L3.3.3 ChatGLM的使用示例 - L3.4 LLAMA
- L3.4.1 LLAMA的特点
- L3.4.2 LLAMA的开发环境
- L3.4.3 LLAMA的使用示例 - L3.5 其他大模型介绍
- L3.1 Agent模型框架
阶段4:AI大模型私有化部署
- 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
- 内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
学习计划:
- 阶段1:1-2个月,建立AI大模型的基础知识体系。
- 阶段2:2-3个月,专注于API应用开发能力的提升。
- 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
- 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的所有 ⚡️ 大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
全套 《LLM大模型入门+进阶学习资源包》↓↓↓ 获取~
👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈