遗传算法与深度学习实战——生命模拟及其应用

遗传算法与深度学习实战——生命模拟及其应用

    • 0. 前言
    • 1. 康威生命游戏
      • 1.1 康威生命游戏的规则
      • 1.2 实现康威生命游戏
      • 1.3 空间生命和智能体模拟
    • 2. 实现生命模拟
    • 3. 生命模拟应用
    • 小结
    • 系列链接

0. 前言

生命模拟是进化计算的一个特定子集,模拟了自然界中所观察到的自然过程,例如粒子或鸟群的聚集方式。生命模拟只是用来探索和优化问题的模拟形式之一,还有很多其他形式的模拟,可以更好地建模各种过程,但它们都源于康威生命游戏 (Conway’s Game of Life)。在本节中,我们将介绍生命模拟的基本概念,并使用 Python 实现康威生命游戏。

1. 康威生命游戏

生命游戏是由约翰·霍顿·康威 (John Horton Conway) 于 1970 年开发的一种简单的细胞自动机;这个“游戏”被认为是计算机模拟的起源。虽然模拟的规则很简单,但它的确能够得到优雅的图案和表现形式。

1.1 康威生命游戏的规则

康威生命游戏之所以优雅,归结于用于模拟细胞生命的规则的简洁性。使用以下四个简单的规则模拟细胞的生命周期:

  • 任何活细胞如果周围少于两个存活邻居,则会死亡(因为人口稀少)
  • 任何活细胞如果周围有两个或三个存活邻居,则会存活到下一代
  • 任何活细胞如果周围有多于三个存活邻居,则会死亡(因为人口过剩)
  • 任何死细胞如果周围恰好有三个存活邻居,则会变成一个活细胞(因为繁殖)

康威生命游戏

1.2 实现康威生命游戏

使用 Python 实现康威生命游戏:

import glob
import io
import base64
from IPython.display import HTML
from IPython import display as ipythondisplay
import matplotlib.pyplot as pltdef show_video():mp4list = glob.glob('*.mp4')if len(mp4list) > 0:mp4 = mp4list[0]video = io.open(mp4, 'r+b').read()encoded = base64.b64encode(video)ipythondisplay.display(HTML(data='''<video alt="test" autoplay loop controls style="height: 400px;"><source src="data:video/mp4;base64,{0}" type="video/mp4" /></video>'''.format(encoded.decode('ascii'))))else: print("Could not find video")import numpy as np
import tqdm.notebook as nbdef life(X, steps):"""Conway's Game of Life.- X, matrix with the initial state of the game.- steps, number of generations."""def roll_it(x, y):# rolls the matrix X in a given directionreturn np.roll(np.roll(X, y, axis=0), x, axis=1)for _ in range(steps):# count the number of neighbours Y = roll_it(1, 0) + roll_it(0, 1) + roll_it(-1, 0) \+ roll_it(0, -1) + roll_it(1, 1) + roll_it(-1, -1) \+ roll_it(1, -1) + roll_it(-1, 1)# game of life rulesX = np.logical_or(np.logical_and(X, Y ==2), Y==3)X = X.astype(int)yield XX = np.zeros((40, 40)) # 40 by 40 dead cells
# R-pentomino
X[23, 22:24] = 1
X[24, 21:23] = 1
X[25, 22] = 1
plt.imshow(X)
plt.show()from matplotlib import pyplot as plt
import matplotlib.animation as manimationFFMpegWriter = manimation.writers['ffmpeg']
metadata = dict(title='Game of life', artist='JustGlowing')
writer = FFMpegWriter(fps=10, metadata=metadata)
fig = plt.figure()
fig.patch.set_facecolor('black')
with writer.saving(fig, "game_of_life.mp4", 200):plt.spy(X)plt.axis('off')writer.grab_frame()plt.clf()for x in nb.tqdm(life(X, 800),total=800):plt.spy(x)plt.axis('off')writer.grab_frame()plt.clf()
show_video()

运行程序,并观察输出,如下图所示。对于这个简单的生命模拟,起始细胞图案很简单,我们还可以使用其他的初始位置观察输出结果。

生命模拟

当模拟完成时,函数 show_video() 可以在输出中显示一个短视频片段。

模拟结果

在进程完成后播放视频,观看细胞模拟的运行。生命游戏的简洁和优雅展示了计算机模拟的强大威力,并由此诞生了多个学科。它展示了如何使用简单的规则来模拟生命,只要给定一些非常基本的规则和输入就能够生成新颖的的解决方案。虽然生命模拟逐渐发展的有别于康威生命游戏,但我们依然努力遵循康威生命游戏中宣扬的简单原则:利用一套简单的规则模拟一个复杂过程,目标是获取一些新颖的模式或解决方案。
在我们开始使用进化或其他方法推导更复杂的生命模拟之前,首先使用一个简单的实现来帮助我们理解。接下来,我们继续探索细胞生命的模拟,为简单起见,只考虑细胞属性,忽略物理条件。

1.3 空间生命和智能体模拟

使用空间表示的模拟,如生命游戏,可以用来进行多种建模和预测,例如交通建模、病毒传播。但在进化深度学习 (Evolutionary Deep Learning, EDL) 中模拟的运行并不是我们的重点,我们关注更多地是数学驱动的,意味着需要更多地关注分析向量或距离,而不是物理空间。

2. 实现生命模拟

接下来,我们将实现一个简单的细胞生命模拟,旨在演示一些基本概念的简单实例。

(1) 首先,导入所需库:

import random
import time
import matplotlib.pyplot as plt

(2) 编写函数用于创建一个新的细胞,并根据所需的后代数量生成一个细胞列表或集合:

def create_cell():return dict(health = random.randint(1, 100))def birth(offspring):return [create_cell() for i in range(offspring)]cells = birth(10)
print(cells)
# [{'health': 2}, {'health': 10}, {'health': 16}, {'health': 6}, {'health': 66}, {'health': 16}, {'health': 15}, {'health': 95}, {'health': 78}, {'health': 82}]

(3) 定义繁殖和死亡的代码/规则,与生命游戏不同,使用一个预定义的参数 RPRD_RATE 来定义新细胞产生的可能性;同样,代码还根据随机评估来检查细胞的死亡情况:

RPRD_RATE = 25
DEATH_RATE = 25

(4) 创建繁殖和死亡函数,设置基本的生命模拟函数:

def reproduce(cells):return [create_cell() for cell in cells if random.randint(1, 100) < RPRD_RATE]  def death(cells):return [cell for cell in cells if random.randint(1, 100) > DEATH_RATE ]def run_generation(cells):cells.extend(reproduce(cells))return death(cells)

(5) 接下来,执行模拟,目标是增加细胞种群:

generations = 10 #@param {type:"slider", min:1, max:25, step:1}
initial_offspring = 10 #@param {type:"slider", min:10, max:1000, step:1}
reproduction_rate = 50 #@param {type:"slider", min:1, max:100, step:1}
death_rate = 25 #@param {type:"slider", min:1, max:100, step:1}RPRD_RATE = reproduction_rate
DEATH_RATE = death_rate
cells = birth(initial_offspring)history = []
for i in range(generations):  cells = run_generation(cells)history.append(len(cells))
plt.plot(history)
plt.show()

观察模拟的运行,如果繁殖和死亡率设置正确,种群将会增加。可以修改驱动模拟的参数,修改参数后再次运行以查看更新的模拟结果。

模拟结果

以上实例的目标只是建立一个简单的细胞模拟,并通过定义控制细胞繁殖和死亡的速率尝试令种群增长。这个模拟并无太多新颖之处,主要目的是为了易于理解和使用。现在我们已经了解了如何实现生命模拟,接下来我们将介绍生命模拟的具体应用。

3. 生命模拟应用

在本节中,我们重用上一小节中的简单实例,并增加执行对细胞上定义的属性的优化。对于大多数进化算法而言,最终的目标是优化过程、参数或结构。
在本节中,我们为每个细胞增加一个新参数 strength。我们的目标是优化整个种群的细胞的 strength 参数,strength 参数代表生物体中能够使其在环境中成功存活的特征,因此我们的目标是在整个种群中最大化参数 strength
使用实时绘图库 LiveLossPlot 绘制机器学习 (Machine Learning, ML) /深度学习 ( Deep learning, DL) 模型的训练损失,LiveLossPlot 库用于实时可视化训练过程中的损失和指标,可以在训练模型时实时更新和显示损失和指标的变化,有助于直观地监控模型的训练进展,首先使用 pip 安装 LiveLossPlot 库。

pip install livelossplot

(1) 导入 PlotLosses 类以及其他所需库:

import random
import time
import matplotlib.pyplot as plt
from livelossplot import PlotLosses

(2) 修改定义生命模拟的函数代码,使用新的参数 strength 来推导细胞的健康状况:

RPRD_BOUNDS = 25
DEATH_BOUNDS = 25def create_cell():return dict(health = random.randint(1, 100),strength = random.randint(1, 100))                     def birth(offspring):return [create_cell() for i in range(offspring)]def evaluate(cells):for cell in cells:cell["health"] *= cell["strength"]/100 return cells

(3) 同样,修改繁殖和死亡函数,不再选择随机细胞进行繁殖或死亡。相反,新函数根据健康属性来确定细胞是否繁殖或死亡。新增两个参数,RPRD_BOUNDSDEATH_BOUNDS 控制细胞在何种健康水平下可以繁殖或何时会死亡:

def reproduce(cells):return [create_cell() for cell in cells if cell["health"] > RPRD_BOUNDS]  def death(cells):  return [cell for cell in cells if cell["health"] > DEATH_BOUNDS ]def run_generation(cells):cells = evaluate(cells)cells.extend(reproduce(cells))return death(cells)

(4) 在以上代码中,根据细胞健康状况调整了明确的规则来确定细胞在何种情况下会死亡或繁殖。模拟的目标是优化细胞的种群属性,最后一个修改是在生成输出时使用 PlotLosses 类输出模拟的实时图形:

generations = 25 #@param {type:"slider", min:1, max:25, step:1}
initial_offspring = 10 #@param {type:"slider", min:10, max:1000, step:1}
reproduction_bounds = 50#@param {type:"slider", min:1, max:100, step:1}
death_bounds = 25 #@param {type:"slider", min:1, max:100, step:1}RPRD_RATE = reproduction_bounds
DEATH_RATE = death_bounds
cells = birth(initial_offspring)groups = {'Population': ['population'], 'Attributes' : ['avg_strength','avg_health']}
liveloss = PlotLosses(groups=groups)history = {}
for i in range(generations):  cells = run_generation(cells)  history["population"] = len(cells)history["avg_strength"] = sum([cell["strength"] for cell in cells])/(len(cells)+1) history["avg_health"] = sum([cell["health"] for cell in cells])/(len(cells)+1) liveloss.update(history)liveloss.send() 

运行代码,下图显示了运行25代模拟后的输出。可以看到,在左侧的属性图中,strength的平均值和健康状况都呈上升趋势。

运行结果

通过修改生命模拟代码,我们能够进行单个属性的简单优化,虽然可以看到种群的 strength 和健康状况逐渐增加,但结果并不令人满意。实际上,如果仅仅使用上示生命模拟复制现实世界,那么世界可能永远无法进化成现在的样子。可以通过完成以下问题进一步理解上示生命模拟过程:

  • 修改死亡率和出生率参数,观察运行结果
  • 修改 evaluate 函数,改变返回的健康参数,然后重新运行模拟,观察其对运行结果的影响
  • 修改 create_cell 函数中的 healthstrength 的初始值后,运行模拟

模拟是一个多样化的领域,但我们主要关注利用模拟进化进行优化。
上示生命模拟缺失的关键是细胞传递其优秀特征给后代的能力。达尔文首次提出生物会将其优秀特征传递给后代,并称之为进化。事实证明,进化理论不仅是地球上生命的基础,也是进化计算的基础。

小结

生命游戏演示了基于规则的生命模拟的基本形式,生命模拟可以帮助我们优化计算和模拟实际问题。生命模拟可通过使用函数定义繁殖和死亡来观察简单行为。本节中,我们介绍了生命模拟的基本概念及其应用。

系列链接

遗传算法与深度学习实战——进化深度学习

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/388647.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

大模型之多模态大模型技术

本文作为大模型综述第三篇,介绍语言大模型多模态技术。 不同于语言大模型只对文本进行处理,多模态大模型将文本、语音、图像、视频等多模态数据联合起来进行学习。多模态大模型融合了多种感知途径与表达形态, 能够同时处理和理解来自不同感知通道(例如视觉、听觉、语言和触…

麒麟系统查看和修改ip

查看ip ifconfig ifconfig enp0s3 192.168.1.110

使用Echarts来实现数据可视化

目录 一.什么是ECharts? 二.如何使用Springboot来从后端给Echarts返回响应的数据&#xff1f; eg:折线图&#xff1a; ①Controller层&#xff1a; ②service层&#xff1a; 一.什么是ECharts? ECharts是一款基于JavaScript的数据可视化图标库&#xff0c;提供直观&…

javaScript中的对象

创建 this指向 命名规则 不符合变量名的命名规则和规范使用数组关联语法获取 遍历对象 使用for&#xff08;var key in 对象&#xff09; 删除属性 对象引用关系

Flutter大型项目架构:私有组件包管理

随着项目功能模块越来越多&#xff0c;怎么去管理这些私有组件包是一个不得不面对的问题&#xff0c;特别对于团队开发来讲&#xff0c;一些通用的公共组件往往会在多个项目间使用&#xff0c;多的有几十个&#xff0c;每个组件包都有有自己的版本&#xff0c;组件包之间还有依…

一篇文章带你入门爬虫并编写自己的第一个爬虫程序

一、引言 目前我们处在一个信息快速迭代更新的时代&#xff0c;海量的数据以大爆炸的形式出现在网络之中&#xff0c;相比起过去那个通过广播无线电、书籍报刊等传统媒介获取信息的方式&#xff0c;我们现在通过网络使用搜索引擎几乎可以获得任何我们需要的信息资源。 但与此同…

Vue前端工程

创建一个工程化的vue项目 npm init vuelatest 全默认回车就好了 登录注册校验 //定义数据模型 const registerDataref({username:,password:,rePassword: }) //校验密码的函数 const checkRePassword(rule,value,callback)>{if (value){callback(new Error(请再次输入密…

python基础知识点

最近系统温习了一遍python基础语法&#xff0c;把自己不熟知的知识点罗列一遍&#xff0c;便于查阅~~ python教程 Python 基础教程 | 菜鸟教程 1、python标识符 以单下划线开头 _foo 的代表不能直接访问的类属性&#xff0c;需通过类提供的接口进行访问&#xff0c;不能用 f…

c++STL容器中vector的使用,模拟实现及迭代器使用注意事项和迭代器失效问题

目录 前言&#xff1a; 1.vector的介绍及使用 1.2 vector的使用 1.2 1 vector的定义 1.2 2 vector iterator&#xff08;迭代器&#xff09;的使用 1.2.3 vector 空间增长问题 1.2.4 vector 增删查改 1.2.5vector 迭代器失效问题。 2.vector模拟实现 2.1 std::vect…

大彩触摸屏与单片机通讯

目录&#xff1a; 一、概述 1、触摸屏简介 2、安装软件 1&#xff09;设置VSPD软件 2&#xff09;设置VisualTFT软件 3&#xff09;设置串口软件 二、单片机发送指令给触摸屏 1、发送文本 2、显示与隐藏控件 1&#xff09;通过指令助手生成指令 2&#xff09;隐藏…

实现Obsidian PC端和手机端(安卓)同步

步骤 1&#xff1a;在PC端设置Obsidian 安装Obsidian和Git&#xff1a;确保你的PC上已经安装了Obsidian和Git。你可以从Obsidian官网和Git官网下载并安装。 克隆GitHub代码库&#xff1a;在PC上打开命令行&#xff08;例如Windows的命令提示符或Mac/Linux的终端&#xff09;&a…

Redis 初步认识

目录 1. 概述 2. 数据结构 3. 使用方式 4. 优势 1. 概述 Redis &#xff08;Remote Directory Server&#xff09;是一个开源的基于内存的数据存储系统&#xff1b; 可以用作数据库缓存和消息队列等各种场景&#xff0c;也是目前最热门的 NoSQL 数据库之一&#xff1b; 早…

LeetCode3. 无重复字符的最长子串(java实现)

今天分享的题目是LeetCode3. 无重复字符的最长子串&#xff0c;来看题目描述&#xff1a; 无重复的最长子串&#xff0c;题目有可能有些小伙伴没读太懂&#xff0c;其实就是找到不重复的最长子串&#xff0c;比如eg3&#xff0c;pwwk&#xff0c;那么w出现了两次就不符合要求。…

Spring源码- context:component-scan base-package标签的作用源码解析

1.扫描包路径下所有的类加载解析成bean定义信息 ClassPathBeanDefinitionScanner .doScan方法调用路径 doScan:276, ClassPathBeanDefinitionScanner (org.springframework.context.annotation) parse:95, ComponentScanBeanDefinitionParser (org.springframework.context.a…

C语言第九天笔记

数组的概念 什 么是数组 数组是 相同类型&#xff0c; 有序数据的集合。 数 组的特征 数组中的数据被称为数组的 元素&#xff0c;是同构的 数组中的元素存放在内存空间里 (char player_name[6]&#xff1a;申请在内存中开辟6块连续的基于char类 型的变量空间) 衍生概念&…

ClkLog:开源用户行为分析框架,让数据分析更轻松

ClkLog&#xff1a;开源用户行为分析框架&#xff0c;让数据分析更轻松 在数据驱动的时代&#xff0c;找到一个好用的用户行为分析工具真是难上加难。但是今天你有福了&#xff0c;开源免费的 ClkLog 就是你的不二选择&#xff01;本文将为你详细介绍 ClkLog 的功能特点、技术架…

【初阶数据结构篇】冒泡排序和快速排序(中篇)

文章目录 冒泡排序和快速排序前言代码位置冒泡排序快速排序递归法实现hoare版本挖坑法lomuto前后指针递归法复杂度分析 非递归法实现 冒泡排序和快速排序 前言 本篇以排升序为例 代码位置 gitee 冒泡排序 动图理解 作为第一个接触的排序算法&#xff0c;冒泡排序想必大…

OpenCV 图像处理 轮廓检测基本原理

文章目录 基本原理关键函数和参数注意事项 示例代码示例效果代码详解findContours 函数原型findContours函数变体 基本原理 轮廓发现是图像处理中的一个重要步骤&#xff0c;用于检测物体的边界和形状。 图像预处理&#xff1a; 轮廓发现通常在灰度图像上进行。因此&#xff0…

程序员转型AI大模型好转吗?成功率高吗?

前言 在程序员圈子中&#xff0c;技术转型近年来一直是热门话题。随着AI技术的迅猛发展&#xff0c;优秀人才短缺&#xff0c;程序员向AI大模型转型似乎成为了一条通往职场先机的路径。但是&#xff0c;这条转型之路是否容易走&#xff0c;成功率又如何呢&#xff1f; 一、程…

SSM大学生体质管理系统-计算机毕业设计源码75960

摘要 基于SSM的大学生体质管理系统是一款综合性平台&#xff0c;融合了在线课程、健康知识、体测报告等多项功能&#xff0c;旨在为广大大学生提供全方位的健康管理服务。通过在线课程和健康知识模块&#xff0c;用户可以随时学习健康知识&#xff0c;掌握科学的健康管理方法&a…