激光线检测算法的FPGA实现

激光线检测算法的FPGA实现

1. 常见的激光线检测算法

激光线检测中常用的三种算法 MAX(最大值法)、THRESH(阈值法)、COG(灰度重心法) 分别具有以下特点和工作原理:


1.1 MAX(最大值法)

  • 原理:通过检测图像中每行或每列的灰度最大值位置,确定激光条纹中心线。假设激光线灰度分布呈高斯型,峰值点即为激光中心。
  • 特点:
    • 实现简单,计算速度快,适合实时性要求高的场景。
    • 精度一般为像素级,易受噪声或光强不均匀影响。
  • 适用场景:对精度要求较低、需快速处理的工业检测(如粗糙表面扫描)。

1.2 THRESH(阈值法)

  • 原理:通过设定灰度阈值分割激光区域,提取高于阈值的像素,再对连通区域进行形态学处理或几何拟合(如直线拟合)确定中心线。
  • 特点:
    • 依赖阈值选择,可能因光照变化或噪声导致误判。
    • 可通过动态阈值优化适应环境变化。
  • 适用场景:光照稳定且对比度较高的场景(如实验室标定)。

1.3 COG(灰度重心法)

  • 原理:基于激光条纹横截面的灰度分布,计算灰度加权平均值作为中心位置。质心位置 x c x_c xc 计算公式为:
    x c = ∑ i = 1 n m i x i ∑ i = 1 n m i x_c = \frac{\sum_{i=1}^n m_i x_i}{\sum_{i=1}^n m_i} xc=i=1nmii=1nmixi
    其中:

    • m i m_i mi 是第 i i i 个激光点的灰度值
    • x i x_i xi 是第 i i i 个激光点的位置
  • 特点:

    • 精度可达亚像素级(如1/32亚像素)。
    • 计算量稍大,但对噪声和光强变化鲁棒性较强。
  • 适用场景:高精度测量(如工业零件尺寸检测、三维重建)。


1.4 对比与选型建议

算法精度抗噪性计算复杂度适用场景
MAX像素级快速粗略检测
THRESH像素级稳定光照下的简单场景
COG亚像素级高精度工业测量与重建

1.5 实际应用参考

  • MAX:用于物流分拣等实时性要求高的场景。
  • THRESH:结合极线约束用于双目视觉匹配。
  • COG:在精密测量中结合误差补偿算法,可达到0.08mm精度。

本文以其中计算复杂度高的 COG算法举例,探索FPGA实现方法。

2. CCD采集的激光线图像

常见的高速sensor图像一般通过多通道并行输出,为了进一步提高输出速率会采用多区域同时输出方案。

本文以4个区域(TL、BL、TR、BR)输出sensor为例,输出顺序如下。

在这里插入图片描述

sensor输出64通道,采集速率为10000fps,分辨率1024x600。要求实时完成COG算法输出质心坐标。

3. FPGA实现

3.1 需求分析

  • 考虑到COG是一维计算,可以选择行或列计算,为了减少数据拼接处理,采用列计算。
  • 考虑到满足实时计算,可以在每个输出通道进行独立计算。如果想节省资源,也可以考虑倍频处理。
  • 考虑到每个通道需要计算一行中的多个像素,需要进行数据缓存处理。
  • 考虑到图像分区域输出的,每个通道在计算本区域的同时还要换成区域边界的数据。

3.2 计算步骤

  • 首先,分4个区域(TL、BL、TR、BR)独立计算。每列分别输出最大光斑和边界数据。

  • 然后,将上下两部分组合,输出每列的最大光斑。

  • 最后,将计算结果数据重新排序输出。

输出数据包括光斑光斑、光斑所占行数、光斑平均灰度等,其中质心坐标支持亚像素精度,数据保存时截取精度比光学精度高一个量级即可。

3.3 资源占用

根据前述分析可知,实际资源占用主要与图像通道数量有关,重点关注优化计算单元逻辑即可,目前优化后在xc7k160tffg676资源使用情况如下。编译时额外包含了数据输出格式转换部分的逻辑和缓存。

在这里插入图片描述
在这里插入图片描述

可见,本方案占用资源较少,适用性强,可在FPGA上集成其他算法。

4. 仿真测试

4.1 测试条件

用已知完成去噪声的线激光采集图像,模拟sensor的4区域64通道数据。

测试源数据CCD图像如下。

在这里插入图片描述

分成4个区域图像如下。上下、左右区域边界均有连接线激光,可充分验证多区域多通道检测算法。

在这里插入图片描述

4.2 仿真结果

4.2.1 质心坐标数据

质心位置的像素坐标输出如下。已截取亚像素精度部分,数值与图像比较基本吻合(行坐标与显示图像的行相反)。

在这里插入图片描述

质心位置的像素坐标(红色)在图像位置如下。
在这里插入图片描述

4.2.2 辅助数据

其他辅助判断数据输出结果如下。线激光越陡峭处的连续行数较多,与实际情况相符。

在这里插入图片描述

5. 结论

本文介绍了常用的线激光检测算法,以及基于高速CCD采集的线激光COG算法的FPGA实现,该算法可以扩展到任意多通道多区域图像数据,配合精度补偿和去噪声预处理能够满足高速、高精度工业测量需求。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/41357.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

小样本微调大模型

一、环境搭建 conda create -n dseek python=3.10 conda activate dseek pip install bitsandbytes Pip install numpy python -m pip install --upgrade pip setuptools wheel 安装cuda,torch,Unsloth, huggingface,wandb等,见前述章节; 微调服务器配置:单机笔记本显卡4…

深入理解指针(2)(C语言版)

文章目录 前言一、数组名的理解二、使用指针访问数组三、一维数组传参的本质四、冒泡排序五、二级指针六、指针数组七、指针数组模拟二维数组总结 前言 在上一篇文章中,我们初步了解了指针的基本概念和用法。今天,我们将继续深入探索指针在数组、函数传…

高效内存管理:x86-64架构中的分页机制

在 x86-64 架构的世界里,内存分页机制扮演着举足轻重的角色,它就像是一座桥梁,连接着虚拟地址与物理地址。简单来说,内存分页机制就是将线性地址(也就是虚拟地址)切分成一个个固定大小的页,并把…

统一开放世界与开放词汇检测:YOLO-UniOW无需增量学习的高效通用开放世界目标检测框架

目录 一、摘要 二、引言 三、相关工作 开放词汇对象检测 开放世界目标检测 参数高效学习 四、高效通用的开放世界目标检测 问题定义 高效的自适应决策学习 开放世界通配符学习 五、Coovally AI模型训练与应用平台 六、实验 数据集 评价指标 实施细节 定量结果 …

fileinclude

##解题思路 场景首页没有什么提示,只有个flag在flag.php中,而且需要更改language,还有个index.php的路径,先记住它 习惯性查看源代码,得到了题目真正的内容,关键在于lan变量读取我们传入的Cookie值中的lang…

链表-LeetCode

这里写目录标题 1 排序链表1.1 插入法 O(n)1.2 归并排序 1 排序链表 1.1 插入法 O(n) /*** Definition for singly-linked list.* struct ListNode {* int val;* ListNode *next;* ListNode() : val(0), next(nullpt…

计算机网络基础:WiFi 与蓝牙的原理与应用

计算机网络基础:WiFi 与蓝牙的原理与应用 一、前言二、WiFi 原理2.1 概述2.2 工作频段2.2.1 2.4GHz 频段2.2.2 5GHz 频段2.3 调制技术2.3.1 正交频分复用(OFDM)2.3.2 直接序列扩频(DSSS)2.4 通信协议2.5 网络架构2.5.1 独立基本服务集(IBSS)2.5.2 基础服务集(BSS)2.5.…

深入解析 Java 类加载机制及双亲委派模型

🔍 Java的类加载机制是确保应用程序正确运行的基础,特别是双亲委派模型,它通过父类加载器逐层加载类,避免冲突和重复加载。但在某些特殊场景下,破坏双亲委派模型会带来意想不到的效果。本文将深入解析Java类加载机制、…

【数据可视化艺术·进阶篇】热力图探秘:用色彩演绎场馆和景区的人流奥秘

假期出游,你是不是也遇到过这样的状况:想去的热门景点,放眼望去全是攒动的人头,根本没法好好欣赏风景;而景区里一些小众角落,却冷冷清清,鲜有人至。还有在轨道交通枢纽、大型体育场这些地方&…

理解文字识别:一文读懂OCR商业化产品的算法逻辑

文字识别是一项“历久弥新”的技术。早在上世纪初,工程师们就开始尝试使用当时有限的硬件设备扫描并识别微缩胶片、纸张上的字符。随着时代和技术的发展,人们在日常生活中使用的电子设备不断更新换代,文字识别的需求成为一项必备的技术基础&a…

智能监控视频聚合平台,GB28181/RTSP/SIP/RTMP直播会议融合方案

全场景智能监控聚合平台:打破边界,赋能高效协同 在数字化转型加速的今天,海量视频监控设备、多样化的编码协议与复杂的业务场景,让企业面临跨系统整合难、资源调度效率低、协作响应慢等痛点。我们的智能监控聚合平台以技术创新为…

【机器学习】imagenet2012 数据预处理数据预处理

【机器学习】数据预处理 1. 下载/解压数据2. 数据预处理3. 加载以及训练代码3.1 使用PIL等加载代码3.2 使用OpenCV的方式来一张张加载代码3.3 h5的方式来加载大文件 最后总结 这个数据大约 140个G,128w的训练集 1. 下载/解压数据 首先需要下载数据: 数据最后处理…

语言模型理论基础-持续更新-思路清晰

1.预训练 相似的任务A、B,任务A已经用大数据完成了训练,得到模型A。 我们利用-特征提取模型的-“浅层参数通用”的特性,使用模型A的浅层参数,其他参数再通过任务B去训练(微调)。 2.统计语言模型 通过条件…

IDEA的基础快捷键

文章目录 1、书写main函数2、书写输出函数println3、书写for循环4、输出变量的值或者输出函数求的值5、代码注释7、主题、字体设置8、自动生成使用信息9、关闭启动IDEA默认打开上次的项目10、字体放大放小11、代码缩进12、快速复制/删除一行13、回退14、字母大小写转换15、调试…

音视频 二 看书的笔记 MediaPlayer

此类是用于播放声音和视频的主要 API 对方不想多说向你丢了一个链接 MediaPlayer Idle 空闲状态Initialized 初始化状态 调用 setDataSource() 时会进入此状态 setDataSource必须在Idle 状态下调用,否则就抛出异常了了了了了。Prepared 准备状态 回调监听setOnPrep…

Linux笔记---动静态库(使用篇)

目录 1. 库的概念 2. 静态库(Static Libraries) 2.1 静态库的制作 2.2 静态库的使用 2.2.1 显式指定库文件及头文件路径 2.2.2 将库文件安装到系统目录 2.2.3 将头文件安装到系统目录 3. 动态库 3.1 动态库的制作 3.2 动态库的使用 3.2.1 显式…

CAS(Compare And Swap)

CAS核心原理 操作流程 CAS 包含三个参数:内存值(V)、预期值(E)和新值(N)。执行步骤如下: 比较:检查当前内存值 V 是否等于预期值 E。 交换:如果相等&#…

宝塔面板安装docker flarum失败,请先安装依赖应用: [‘mysql‘]:5/8

安装失败的解决方案 提示错误请先安装依赖应用: [mysql]:5/8 解决方案:不要使用最新的docker mysql,使用5.7.44版本docker mysql,等安装完毕再安装docker flarum就不会报错了。 如果安装完成你不知道默认的账号密码可以看这里 宝塔docker f…

c#的.Net Framework 的console 项目找不到System.Window.Forms 引用

首先确保是建立的.Net Framework 的console 项目,然后天健reference 应用找不到System.Windows.Forms 引用 打开对应的csproj 文件 在第一个PropertyGroup下添加 <UseWindowsForms>true</UseWindowsForms> 然后在第一个ItemGroup 下添加 <Reference Incl…

基于 mxgraph 实现流程图

mxgraph 可以实现复杂的流程图绘制。mxGraph里的Graph指的是图论(Graph Theory)里的图而不是柱状图、饼图和甘特图等图(chart)&#xff0c;因此想找这些图的读者可以结束阅读了。 作为图论的图&#xff0c;它包含点和边&#xff0c;如下图所示。 交通图 横道图 架构图 mxGrap…