【Python 学习】Pandas基础与应用(1)

题目

  • 1 Pandas 简介
    • 1.1 主要特征
    • 1.2 Pandas 安装
  • 2 Pandas中的数据结构
    • 2.1 Series 数据结构和操作
      • 2.1.1 Series的数据结构
      • 2.1.2 Seres的操作
    • 2.2 DataFrame 数据结构和操作
      • 2.2.1 DataFrame 数据结构
      • 2.2.2 Dataframe 操作
      • 2.2.3 DateFrame 的特殊操作
    • 2.3 Series 和 DataFrame 的联系和转换
      • 2.3.1 联系
      • 2.3.2 {s.name: s.values}型转换
      • 2.3.3 {s.name: s}型转换
  • 3 pandas中数据的基本操作
    • 3.1 数据的写入
      • 3.1.1 写入 csv 文件
      • 3.1.2 写入excel文件
      • 3.1.3 写入 json文件
    • 3.2 数据的读取
      • 3.2.1 语法格式
      • 3.2.2 读取 csv 文件
      • 3.2.3 读取 excel 文件
  • 3.3 数据的编辑
      • 3.3.1 数据的增加
      • 3.3.2 删除数据
      • 3.3.3 修改数据

1 Pandas 简介

1.1 主要特征

Pandas 是Python中的一个高效易用的数据结构和数据分析的第三方库。Pandas是Python中数据分析的基础,旨在成为最实用最便利的开源数据分析的工具。其主要特性如下:

  • 善于处理浮点数和非浮点数的数据缺失(用NaN来表示);
  • 大小可变:数据的行列能够从DataFrame或者更高维度的数据结构中添加或者删除;
  • 自动数据对齐:目标会被显式地根据标签对齐,使用者也可以忽略标签,直接利用DataFrame、Series来自动对齐;
  • 功能强大,灵活的分组功能,可对数据执行拆分-应用-组合的一系列操作,以便聚合和转换数据;
  • 可以很方便地把其他Python和NumPy的杂乱的数据结构转换成DataFrame对象;
  • 基于智能标签的切片、花式索引和子集化大数据集;
  • 直观的合并和连接数据集;
  • 灵活的重塑(reshape)和数据集的旋转;
  • 轴的分层标签(每个标记可能有多个标签);
  • 强大的IO工具,用于从原始文件(CSV)、Excel文件、数据库中加载数据,以及从超快速HDF5格式保存/加载数据;
  • 时间序列-特定功能:日期范围生成和频率转换、移动窗口统计、移动窗口线 性回归、日期移动和滞后等。

1.2 Pandas 安装

Anaconda环境中默认已集成了Numpy和Pandas等第三方工具包,如想自行安装,可使用pip命令或conda命令。

安装包方法:

  1. pip命令,语法格式为:pip install pandas
  2. conda命令,语法格式为:conda install pandas

还可以使用conda list pandas查看已安装的pandas包的版本信息。

2 Pandas中的数据结构

2.1 Series 数据结构和操作

2.1.1 Series的数据结构

Series 是一个一维的标签数组,一种类似于一维数组的对象,它由一组数据以及一组与之相对应的数据标签(即索引)组成。创建Series的语法为:
Series = pd.Series(data, index=index, name=name, dtype=dtype)

参数说明:

  • data: 一维数组或列表,包含 Series 的数据。
  • index: 可选参数,索引标签。如果未指定,将默认使用整数索引(从 0 开始)。
  • name: 可选参数,为 Series 设置名称。
  • dtype: 可选参数,指定数据类型。如果未指定,Pandas 会根据 data 自动推断数据类型。
    在这里插入图片描述
  1. 使用标量创建Series:index参数必须设置,如未设置index,默认状态时生成只有一组数据(1个data和一个索引)的Series。

代码演示:

s1 = pd.Series(66, index = [1,2,3])
print("数据为标量,索引为[1,2,3],会按照索引的数目用该标量补充:\n",s1)s2 = pd.Series(66)
print("数据为标量,设置index,默认状态时生成只有一组数据:\n",s2)

在这里插入图片描述

  1. 列表或数组创建Series,自定义内容

代码演示:

s1 = pd.Series(data = np.arange(5,10))
print("数组或列表创建Series,index默认,索引默认从0开始:\n",s1)print("--------------")
s2 = pd.Series(data = np.arange(1,6),index = ['A','B','C','D',"E"], name = "自然数", dtype = "float32")
print("自定义索引、数据类型,命名为自然数:\n",s2)

在这里插入图片描述

  1. 字典创建Series:当index默认时,会自动以字典的key作为索引,并按照排序后排列。自定义索引时,字典中的key和标签不匹配就不显示value,多出的标签填空值。
    代码演示:
dic = {'b':6, 'c':3, 'a':2, 'w': 8}
s1 = pd.Series(data =dic )
print("字典创建Series,index默认:\n",s1)print("--------------")
s2 = pd.Series(data = dic,index = ['a','b','c','d'])
print("字典创建Series,index为 ['A','B','C','D']:\n",s2)
print("注:字典中的key和标签不匹配就不显示value,多出的标签填空值")

在这里插入图片描述

2.1.2 Seres的操作

对于Series对象的使用,主要取决于其创建对象的相关操作。由于数组和字典都可以用来创建Series,所以Series除了具备基本属性外,还适用数组、字典的相关操作。Series支持许多数组类型的操作。如:索引、切片等,以及许多NumPy的函数也适用于Series,其返回值仍是Series

  1. 显示Series对象的属性。Series的常用属性包括values和index,还有name和index.name 属性。

代码演示:

s = pd.Series(data = np.arange(1,7),index = np.arange(1,7),name = "学习", dtype = "int32")
print("Series:\n",s)
print("------------")
print("Serise的属性values:",s.values)
print("Serise的属性index:",s.index)
print("Serise的属性name:", s.name)
print("Serise的属性dtype:", s.dtype)

在这里插入图片描述

  1. Series支持数组类型的操作。如:索引(索引的是标签对应的值)切片(切片的是位置对应的值,第一个值的位置是0) 等。
    索引:索引的是 标签对应的值
    代码演示:
dic = {'b':6, 'c':3, 'a':2, 'w': 8}
s1 = pd.Series(data =dic )
print("Series:\n",s1)
print("用索引a,s1['a']:", s1['a'])print("------------")
s2 = pd.Series(data = np.arange(5,10),index = np.arange(1,6))
print("Series:\n",s2)
print("用索引1,实际打印出的是标签对应的数,s2[1]:", s2[1])print("------------")
s3 = pd.Series(data = [1,2,3,4], index = [6,8,6,8])
print("用索引6,实际打印的是标签全为6 index和value :\n",s3[6])

在这里插入图片描述

切片:
代码演示:

s2 = pd.Series(data = np.arange(5,10),index = np.arange(1,6))
print("Series:\n",s2)
print("用切片 s2[2:5] ,位置2-位置4对应的 index和value :\n",s2[2:5])
print("用切片 s2[0:1] ,位置0对应的 index和value :\n",s2[0:1])

在这里插入图片描述

  1. Series还适用于字典的基本操作,如in()和get()。in()用来查看Series中是否有某个标签,返回值为True或False;get() 来索引不存在的标签,有该标签返回对应的value,反之返回值为Nan。

代码演示:

s = pd.Series(data = ['a','b','c','d','e'],index = np.arange(1,6))
print("Series:\n",s)
print( "索引标签 1, 'b' in s:", 1 in s)
print( "索引标签 9, 'z' in s:", 9 in s)
print("索引标签 1 ,s.get(1),直接返回对应的值:", s.get(1) )
print("索引标签‘j' ,s.get('j'),每该标签返回值为Nan:", s.get('a') )

在这里插入图片描述

  1. Series还支持一些向量化操作。如两个Series相加、数乘等。

代码演示:


s1 = pd.Series(data = np.arange(1,6))
s2 = pd.Series(data = np.arange(9,4,-1))
print("Series:\n",s1)
print("Series:\n",s2)
#加减乘车类似
print("s1 + s2:\n",s1+s2)

在这里插入图片描述

2.2 DataFrame 数据结构和操作

2.2.1 DataFrame 数据结构

DataFrame是一个结构类似于二维数组或表格的数据类型,可以看作一张表格,它含有一组有序的列,每一列的数据类型都是一致的。DataFrame类对象由索引和数据组成,与Series类对象相比,该对象有两组索引,分别是行索引(index)和列索引(columns)。DataFrame的数据结构如下图所示。

创建DataFrame的语法为:
pandas.DataFrame(data = data, index = index, columns= columns, dtype= dtype, copy = copy)

参数说明:

  • data: 可以是多种类型的数据结构,如 NumPy ndarray, dict, nested list, Series, another DataFrame 等。
  • index: 行标签的数组,长度必须与 data 的长度匹配。如果未提供,则自动使用整数索引。
  • columns: 列标签的数组。如果 data 是一个 dict 并且 columns 没有提供,则使用字典的键作为列名。
  • dtype: 数据类型,可选,默认为 None,表示自动检测数据类型。
  • copy: 如果为 True,则对传递的数据进行深拷贝。
    在这里插入图片描述
  1. 由数组构建DataFrame。系统自动分配列索引和行索引,也可以自定义。

代码演示:

data = np.arange(0,9).reshape(3,3)
df1 = pd.DataFrame(data = data)
print("默认行索引和列索引:\n",df1)
print("------------")
df2 = pd.DataFrame(data = data,index = ['a','b','c'],columns = ['A','B','C'])
print("自定义行索引和列索引:\n",df2)

在这里插入图片描述

  1. 列表类型是字典时,一般不需另外指定列的索引,会自动采用字典的key竖向作为列索引,并排序后输出,但支持指定行索引。

注意:字典值的长度必须相同,否则会报错。

代码演示:

dic = { "name":['Tom','jacker','dog'], "age":[18, 19, 18], "number":[111,222,333]}
df = pd.DataFrame(data = dic)
print(df)

在这里插入图片描述

  1. DataFrame的常用属性包括values、index、columns、dtypes、size、ndim和shape等,分别可以显示DataFrame的数据、索引、列名、类型、元素个数、维度和形状等。
属性属性含义
.values显示DataFrame的数据
.index显示DataFrame的索引
.columns显示DataFrame的列名
.dtypes显示DataFrame的数据类型
.sizes显示DataFrame元素个数
.ndim显示DataFrame的维度数
.shape显示DataFrame的形状(x行y列)

2.2.2 Dataframe 操作

pandas.DataFrame 对象提供了两种主要的方式来访问和操作数据:.loc.iloc。这两种方法分别基于标签和基于位置来进行索引。

我们定义一个DataFrame对象:
dic = { "name":['Tom','jacker','dog'], "age":[18, 19, 18], "number":[111,222,333]}
df = pd.DataFrame(data = dic)
访问数据的方式说明
df[ ]只能索引一个列的标签
df.loc[ ][ ]df.loc[行的标签][列的标签]索引某个值
df.loc[ ]df.loc[]只能索引一个行的标签
df.loc[ [ ] ]df.loc[[行标签的列表]]索引n行的标签
df.loc[ : ,[ ] ]df.loc[:,[列标签的列表]]索引m列的标签
df.loc[ [ ] , [ ] ]df.loc[[行标签的列表][列标签的列表]]索引n行m列
df.iloc[ [ ], [ ] ]df.iloc[行标签的位置][列标签的位置]索引n行m列

代码演示:

dic = { "name":['Tom','jacker','dog'], "age":[18, 19, 18], "number":[111,222,333]}
df = pd.DataFrame(data = dic)
print(df)
print("------------")
print("df[]只能索引一个列的标签:\n",df["name"])
print("------------")
print("df.loc[行的标签][列的标签]索引某个值:",df.loc[0]['name'])
print("------------")
print("df.loc[]只能索引一个行的标签:\n:",df.loc[1])
print("------------")
print("df.loc[[行标签的列表]]索引行的标签:\n:",df.loc[[1, 2]])
print("------------")
print("df.loc[:,[列标签的列表]]索引m列的标签:\n:",df.loc[:,["name", "age"]])
print("------------")
print("df.loc[[行标签的列表][列标签的列表]]索引n行m列:\n",df.loc[[1,2],['name','number']])
print("------------")
print("df.iloc[行标签的位置][列标签的位置]索引n行m列,:\n",df.iloc[[1,2],[1,2]])

在这里插入图片描述

2.2.3 DateFrame 的特殊操作

加入条件后的操作。
代码演示:

dic = { "name":['Tom','jacker','dog'], "age":[18, 19, 18], "number":[111,222,333]}
df = pd.DataFrame(data = dic)data1 = df.loc[:,"name":"number"]
print("使用切片 'name':'number' :\n",data1)
print("-----------")
data2 = df.loc[df['age']<19,"name":"number"]
print('使用条件和切片 .loc[df["age"]<19,"name":"number"]:\n',data2)

在这里插入图片描述

2.3 Series 和 DataFrame 的联系和转换

2.3.1 联系

  1. DataFrame 的列是 Series:
    DataFrame 的每一列实际上就是一个 Series。这意味着你可以通过列名来获取 DataFrame 中的某一列,并且得到的结果将是一个 Series。
  2. 转换 Series 为 DataFrame:
    可以通过将一个 Series 转置(使用 .to_frame() 或 .to_frame(name) 方法)或将多个 Series 放入一个字典中然后创建 DataFrame 来从 Series 创建 DataFrame。

2.3.2 {s.name: s.values}型转换

把Seirs对象的名字作为DataFrame的列索引,Series对象的值作为DataFrame的值,index索引默认。
在这里插入图片描述
代码演示:

s1 = pd.Series(data = np.arange(1,4),name = "序列")
s2 = pd.Series(data = ["李明","李华", "小明"], name = "name")
df = pd.DataFrame(data = {s1.name:s1.values, s2.name: s2.values})
print("打印 s1 :\n",s1)
print("打印 s2 :\n",s2)
print("打印 s1和s2 的组合转换 :\n",df)

在这里插入图片描述

2.3.3 {s.name: s}型转换

这种转换会把 相同的行标签 对应的值放在同一行(自动对齐),对齐后空缺值用NaN补全。

代码演示:

s1 = pd.Series(data = np.arange(1,4), index = [1,2,3],name = "序列")
s2 = pd.Series(data = ["李明","李华", "小明"],index = [1,2,3] ,name = "name")
df1 = pd.DataFrame(data = {s1.name:s1, s2.name: s2})
print("打印 s1 :\n",s1)
print("打印 s2 :\n",s2)
print("s1和s2的索引都一致:\n",df1)
print("------------")s3 = pd.Series(data = np.arange(1,4), index = [1,2,3],name = "序列")
s4 = pd.Series(data = ["李明","李华", "小明"],index = [2,3,4] ,name = "name")
df2 = pd.DataFrame(data = {s3.name:s3, s4.name: s4})
print("打印 s3 :\n",s3)
print("打印 s4 :\n",s4)
print("s3和s4的索引不一致:\n",df2)

在这里插入图片描述

3 pandas中数据的基本操作

3.1 数据的写入

3.1.1 写入 csv 文件

CSV(逗号分隔值)文件是一种常见的数据交换格式。Pandas 提供了 to_csv 方法来将 DataFrame 写入 CSV 文件(csv文件其实也是一个文本文件,用excel直接打开后为表格形式)。

语法格式:pd.to_csv(路径,index,encoding)

  • index=False:默认情况下,Pandas 会在 CSV 文件中包含索引列。如果你不想包含索引列,可以设置 index=False。
  • encoding=‘utf-8’:指定输出文件的编码,默认是 utf-8,但也可以指定其他编码,如 gbk。

代码演示:

data = {'Name': ['Alice', 'Bob', 'Charlie'],'Age': [25, 30, 35],'City': ['北京', '上海', '广州']
}df = pd.DataFrame(data)
# 写入 CSV 文件
df.to_csv('output.csv')

用记事本打开:
在这里插入图片描述
用excel打开:
在这里插入图片描述

3.1.2 写入excel文件

excel 文件的扩展名是 .xlsx ,exce文件是表格文件。

代码演示:

data = {'Name': ['Alice', 'Bob', 'Charlie'],'Age': [25, 30, 35],'City': ['北京', '上海', '广州']
}df = pd.DataFrame(data)
# 写入 excel 文件
df.to_excel('output.xlsx', index=False)

在这里插入图片描述

3.1.3 写入 json文件

JSON(JavaScript 对象表示法)是一种轻量级的数据交换格式。Pandas 使用 to_json 方法来将 DataFrame 写入 JSON 文件。

代码演示:

data = {'Name': ['Alice', 'Bob', 'Charlie'],'Age': [25, 30, 35],'City': ['北京', '上海', '广州']
}df = pd.DataFrame(data)
# # 写入 JSON 文件
df.to_json('output.json', orient='records', force_ascii=False)
  • orient=‘records’:指定 JSON 数据的格式。‘records’ 使得每一行成为一个独立的对象,整个 DataFrame 被表示为一个对象数组。
  • force_ascii=False:允许非 ASCII 字符直接写入,这样中文字符不会被转义。

在这里插入图片描述

3.2 数据的读取

3.2.1 语法格式

Pandas支持多种文件格式的数据读取与写入,包括txt、Excel、csv、sql、table、html和json等众多格式。读取文件的语法格式为:

File = pd.read_xxx(file, encoding)

其中,read_xxx()函数的选择取决于要读取文件的格式,在实际操作中可以tab键补全函数;file是指将要读取的文件路径encoding是指读取文件的编码格式,一般常用的有utf-8、utf-16、gbk及gb2312。
Dataframe数据也可以保存在各种格式的文件中,需要使用的函数是.to_xxx()函数。

在这里插入图片描述
在这里插入图片描述

3.2.2 读取 csv 文件

将CSV中的数据转换为DataFrame对象是非常便捷的。和一般文件读写不一样, 它不需要你做打开文件、读取文件、关闭文件等操作。相反,您只需要一行代码就可以完成上述所有步骤,并将数据存储在DataFrame中。

  1. csv文件实际也是一个文本文件,读取.txt 文件用的是读取csv文件的方式。csv文件的分隔符通常为‘ ,’,默认情况下我们不用设置sep。

分隔符为‘,’:
在这里插入图片描述
代码演示:

df = pd.read_csv("test.txt",encoding = "utf-8")
print(df)

在这里插入图片描述

  1. ①. csv文件有表头并且是第- -行,那么names和header都无需指定;
    ②. csv文件有表头、但表头不是第- -行,可能从下面几行开始才是真正的表头和数据,这个时候指定header即可;
    ③. csv文件没有表头, 全部是纯数据,那么我们可以通过names手动生成表头;
    ④. csv文件有表头、但是这个表头你不想用,这个时候同时指定names和header。先用header选出表头和数据,然后再用names将表头替换掉,就等价于将数据读取进来之后再对列名进行rename;

  2. 改文件的索引(index_col),把时间改为时间戳

在这里插入图片描述

代码演示:

df = pd.read_csv("test.txt",index_col = "birthday")
print("打印df对象:\n",df)
print("此时的行索引为:",df.index)
print("object 类型是整体类型,不是时间戳")
print("---------")
print("把整体类型的时间改为时间戳,时间戳是pandas可以直接索引的类型")
df.index = pd.to_datetime(df.index)
print(df.index)
print("---------")
print("打印df对象:\n",df)
print("打印df中2003年出生的同学:\n",df.loc["2003"])

在这里插入图片描述

3.2.3 读取 excel 文件

  1. 表格完整,直接读取
    在这里插入图片描述

代码演示:

df = pd.read_excel("test.xlsx")
print(df)

在这里插入图片描述

  1. 表格没有表头,读取时会把数据第一行作为表头,那我们应该怎么处理呢?设置参数header = None。如果想自定义一个表头,需要设置参数header = None,name = []。

在这里插入图片描述
不设置参数直接读取:
在这里插入图片描述
添加参数后的代码为:

df = pd.read_excel("test.xlsx",header= None, names= ["序列号","姓名", "年龄"])
print(df)

在这里插入图片描述

3.3 数据的编辑

3.3.1 数据的增加

  1. 可以通过给新列直接赋值来为DataFrame增加新列。默认状态下,新增加的列将排在原对象的后面;
  2. 可以使用insert()方法,将列添加到指定位置。用法为:df1.insert(iloc,column,value),其中,第一个参数是增加列的位置,第二个参数是增加列的索引,第三个位置是增加列的内容。

代码演示:

s2 = pd.Series(data = ["李明","李华", "小明"], name = "name")
df = pd.DataFrame(data = {s1.name:s1.values, s2.name: s2.values})
print("打印df对象:\n",df)df['test1'] = 66
print("增加一列test1:\n", df)
df['test2'] = pd.Series([77,77,77], index = np.arange(0,3))
print("增加一列test2:\n", df)
df.insert(1,'test3',df['test2'])
print('增加一列test3, 在位置1,名为test3,值为df["test2"]:\n', df)

在这里插入图片描述

3.3.2 删除数据

可用关键词 del 或者 pop() 方法删除指定列。还可以使用drop()方法,并设置axis参数指定要删除的是行还是列,默认不改变原数据,若要在原数据中删除,需要设置参数inplace=True。

代码演示:

s1 = pd.Series(data = np.arange(1,4),name = "序列")
s2 = pd.Series(data = ["李明","李华", "小明"], name = "name")
df = pd.DataFrame(data = {s1.name:s1.values, s2.name: s2.values})
df['test1'] = 66
df['test2'] = pd.Series([77,77,77], index = np.arange(0,3))
df.insert(1,'test3',df['test2'])print("打印df对象:\n",df)
del df['test3']
print("删除数据test3:\n",df)
df.pop('test2')
print("删除数据test2:\n",df)

在这里插入图片描述

3.3.3 修改数据

对选定的数据直接赋值即可修改数据,数据的修改操作无法撤销,且是在原数据上直接修改,因此需要实现做好数据的备份。
代码演示:

s1 = pd.Series(data = np.arange(1,4),name = "序列")
s2 = pd.Series(data = ["李明","李华", "小明"], name = "name")
df = pd.DataFrame(data = {s1.name:s1.values, s2.name: s2.values})
print("打印df对象:\n",df)df.loc[0,"name"] = "***"
print("打印修改后的df对象:\n",df)

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/419347.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux——网络基础Socket编程

目录 一计算机网络背景 二协议 1初始协议 1.1协议分层 1.2OSI七层模型 1.3TCP/IP五层模型 2再始协议 2.1为什么要有TCP/IP协议 2.2TCP/IP与OS的关系 2.3所以什么是协议 三网络传输基本流程 1局域网&#xff08;以太网&#xff09;通信原理 1.1认识mac地址 2同…

【牛站 / USACO2007】

题目 思路 离散化&#xff08;降低空间复杂度&#xff09; 点的编号 ∈ [ 1 , 1000 ] &#xff0c;但是点的个数最多为 2 ⋅ T ∈ [ 4 , 200 ] 点的编号 \in [1, 1000]&#xff0c;但是点的个数最多为 2 \cdot T \in[4, 200] 点的编号∈[1,1000]&#xff0c;但是点的个数最多为…

python文件自动化(4)

接上节课内容&#xff0c;在开始正式移动文件到目标文件夹之前&#xff0c;我们需要再思考一个问题。在代码运行之前&#xff0c;阿文的下载文件夹里已经存在一些分类文件夹了&#xff0c;比如图例中“PDF文件”这个文件夹就是已经存在的。这样的话&#xff0c;在程序运行时&am…

电脑硬盘数据丢失了怎么恢复?简单实用的硬盘数据找回的方法

我们的电脑使用硬盘作为存储设备来保存数据&#xff0c;硬盘里的数据是存储在扇区上&#xff0c;这些存储数据的单元则位于表面有磁性材料的旋转的盘片上。硬盘内部的磁头悬浮于高速旋转的盘片上&#xff0c;用于读写和检索数据。 假如我们使用电脑时不小心删除了某个文件&…

【B题第二套完整论文已出】2024数模国赛B题第二套完整论文+可运行代码参考(无偿分享)

2024数模国赛B题完整论文 摘要&#xff1a; 随着电子产品制造业的快速发展&#xff0c;质量控制与成本优化问题成为生产过程中亟待解决的核心挑战。为应对生产环节中的质量不确定性及成本控制需求&#xff0c;本文结合抽样检测理论和成本效益分析&#xff0c;通过构建数学模型…

ELK笔记

要搞成这样就需要钱来买服务器 开发人员一般不会给服务器权限&#xff0c;不能到服务器上直接看日志&#xff0c;所以通过ELK看日志。不让开发登录服务器。即使你查出来是开发的问题&#xff0c;费时间&#xff0c;而且影响了业务了&#xff0c;就是运维的问题 开发也不能登录…

2024国赛数学建模C题论文:基于优化模型的农作物的种植策略

大家可以查看一下35页&#xff0c;包含结构完整&#xff0c;数据完整的C题论文&#xff0c;完整论文见文末名片 添加图片注释&#xff0c;不超过 140 字&#xff08;可选&#xff09; 添加图片注释&#xff0c;不超过 140 字&#xff08;可选&#xff09; 添加图片注释&#xf…

Computer Exercise

每日一练 单选题 &#xff08;     D     &#xff09; 的作用是在外界中断供电的情况下&#xff0c;及时给计算机等设备供电。 A.WPS     B.USB     C.UBS     D.UPS&#xff08;    B     &#xff09;广泛应用于精密仪器、医疗设备等对电流稳定性要求较高的场…

Unity之获取Avpro视频画面并在本地创建缩略图

一、效果 获取StreamingAssets文件夹下的所有视频&#xff08;包含其子文件夹&#xff09;&#xff0c;获取指定时间的视频画面&#xff0c;然后将图片保存到本地磁盘中。 二、关于Avpro的事件监听 当指定视频时间进度时会触发FinishedSeeking&#xff0c;代表加载完成这时我们…

fpga系列 HDL:Relu激活函数实现与仿真

代码实现对OUTPUT_NODES个32位浮点数进行RELU操作。32位浮点数的二进制表示遵循 IEEE 754 标准&#xff0c;通常称为单精度浮点数。这个标准定义了浮点数的表示方法&#xff0c;具体分为三个部分&#xff1a; 符号位 (1 bit): 用于表示浮点数的正负。&#xff08; 0 表示正数&a…

全国糖酒会,就这5个字。“会天下美味”

“全国糖酒会&#xff0c;会天下美味”&#xff0c;是全国糖酒会的品牌口号。这个品牌口号来的非常偶然。 两年前&#xff0c;全国糖酒会准备更新标志之时&#xff0c;也设计了一个品牌口号。新标志发布前几天&#xff0c;临时作了调整&#xff0c;最终变成了“全国糖酒会&…

linux下oracle启动及关于pfile和spfile启动参数文件的配置

在现代企业环境中&#xff0c;Oracle数据库作为关键的业务支撑平台&#xff0c;承载着大量的数据处理和事务管理任务。 无论是对于DBA&#xff08;数据库管理员&#xff09;还是开发人员来说&#xff0c;掌握Oracle数据库的基本操作和配置技巧都是至关重要的。本文提供了一份全…

Flutter基本组件Text使用

Text是一个文本显示控件&#xff0c;用于在应用程序界面中显示单行或多行文本内容。 Text简单Demo import package:flutter/material.dart;class MyTextDemo extends StatelessWidget {const MyTextDemo({super.key});overrideWidget build(BuildContext context) {return Sca…

Protobuf库的使用

文章目录 Protobuf是什么Protobuf使⽤流程介绍ProtoBuf的使用创建.proto⽂件指定proto3语法package声明符定义消息&#xff08;message&#xff09;编译contacts.proto⽂件命令如下&#xff1a;序列化与反序列化的使⽤ Protobuf是什么 ProtoBuf&#xff08;全称ProtocolBuffer…

【Python基础】Python函数

本文收录于 《Python编程入门》专栏&#xff0c;从零基础开始&#xff0c;分享一些Python编程基础知识&#xff0c;欢迎关注&#xff0c;谢谢&#xff01; 文章目录 一、前言二、函数的定义与调用三、函数参数3.1 位置参数3.2 默认参数3.3 可变数量参数&#xff08;或不定长参数…

若依框架登录鉴权详解(动态路由)

若依框架登录鉴权&#xff1a;1.获取token&#xff08;过期在响应拦截器中实现&#xff09;,2.基于RBAC模型获取用户、角色和权限信息&#xff08;在路由前置守卫&#xff09;&#xff0c;3.根据用户权限动态生成&#xff08;从字符串->组件&#xff0c;根据permission添加动…

【C++进阶】hash表的封装

文章目录 hash表哈希表的关键组成部分哈希表的优缺点优点&#xff1a;缺点&#xff1a; 常见应用场景 开放定址法实现hash表负载因子 (Load Factor)负载因子的意义负载因子的影响再散列 (Rehashing)示例 整体框架insertFinderasehash桶封装框架insertfinderase~HashTable() 总结…

银行结算业务

1.1 银行本票 银行本票是由银行签发的,承诺自己在见票时无条件支付票款给收款人或持票人的业务。银行本票按票面划分为定额本票和不定额本票,按币种划分为人民币银行本票和外币银行本票。人民币银行本票仅在同一交换区域内使用,资金清算利用当地人民银行组织的资金清算形式…

多个vue项目部署到nginx服务器

文章目录 需求一、项目打包1.vue.config.js2.request.js文件3.打包 二、nginx配置 需求 同一个域名安装多个vue项目。 比如&#xff1a;域名为 https://domain.com 后缀。那么通过不同的后缀就能去访问不同的项目地址。 https://domain.com&#xff0c;不加任何后缀&#x…

【第0006页 · 数组】寻找重复数

【前言】本文以及之后的一些题解都会陆续整理到目录中&#xff0c;若想了解全部题解整理&#xff0c;请看这里&#xff1a; 第0006页 寻找重复数 今天想讨论的一道题在 LeetCode 上评论也是颇为“不错”。有一说一&#xff0c;是道好题&#xff0c;不过我们还是得先理解了它才…