第67期 | GPTSecurity周报

图片

GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区,集成了生成预训练Transformer(GPT)、人工智能生成内容(AIGC)以及大语言模型(LLM)等安全领域应用的知识。在这里,您可以找到关于GPT/AIGC/LLM最新的研究论文、博客文章、实用的工具和预设指令(Prompts)。现为了更好地知悉近一周的贡献内容,现总结如下。

Security Papers

1. GitHub Copilot 在编程方面表现出色,但它是否确保了负责任的输出?

简介:大语言模型(LLMs)的快速发展极大地推动了代码补全工具(LCCTs)的进化。这些工具通过整合多种信息源并优先提供代码建议,与传统LLMs不同,它们在安全方面面临独特挑战。特别是,LCCTs在训练时依赖专有代码数据集,这可能增加敏感数据泄露的风险。研究表明,LCCTs存在显著的安全漏洞,例如,针对GitHub Copilot的越狱攻击成功率高达99.4%,而从其中提取敏感用户数据的成功率也相当高。这些发现强调了LCCTs在安全方面的挑战,并为加强其安全框架提供了重要方向。

链接:

https://arxiv.org/abs/2408.11006

2. 语言模型应用程序中的数据泄露:对 OpenAI 的 GPT 产品的深入调查

简介:研究者们在探索大语言模型(LLM)应用的数据实践透明度时,以OpenAI的GPT应用生态系统作为案例研究。他们开发了一个基于LLM的框架,对GPT及其动作(外部服务)的源代码进行了静态分析,以揭示其数据收集的做法。研究发现,这些动作收集了大量用户数据,包括OpenAI明令禁止的敏感信息,如密码。此外,一些与广告和分析相关的动作嵌入在多个GPT中,使得它们能够跨平台追踪用户活动。动作的共现还可能导致用户数据的进一步暴露,增加了隐私风险。研究者还开发了一个基于LLM的隐私政策分析框架,用以自动检查动作的数据收集是否与隐私政策中的披露相一致。结果显示,大多数收集的数据类型在隐私政策中并未明确披露,仅有5.8%的动作清晰地说明了它们的数据收集实践。这一发现强调了LLM应用在数据实践透明度方面存在的问题,并指出了加强隐私保护措施的必要性。

链接:

https://arxiv.org/abs/2408.13247

3. 去伪存真:利用执行反馈对生成的代码候选进行排序

简介:大语言模型(LLMs)如GPT-4、StarCoder和CodeLlama正在改变编程方式,通过自然语言描述自动生成代码。尽管如此,生成正确代码仍然具有挑战性。为了提高正确代码的生成率,开发者通常使用LLMs生成多个候选解决方案,然后进行代码排名,即从多个候选代码中选择正确的一个。现有的代码排名研究主要分为基于执行和非基于执行的方法。基于执行的方法虽然有效,但受限于高质量单元测试的稀缺和潜在的安全风险。而非基于执行的方法,如CodeRanker,主要依赖分类标签进行训练,难以捕捉细微错误和提供错误洞察。

为了克服这些限制,研究者提出了一种新的方法——RankEF。RankEF是一种创新的代码排名方法,它利用执行反馈并通过多任务学习整合代码分类与执行反馈生成。这种方法使模型能够在不执行代码的情况下,理解错误代码的原因,并区分正确与错误的解决方案。在三个代码生成基准上的实验显示,RankEF显著优于现有的CodeRanker,展现出在代码排名方面的高效性和准确性。

链接:

https://arxiv.org/abs/2408.13976

4. 调查贝叶斯垃圾邮件过滤器在检测经语言模型修改的垃圾邮件中的有效性

简介:垃圾邮件和网络钓鱼是网络安全的重大威胁,贝叶斯垃圾邮件过滤器如 SpamAssassin 是重要防御工具。但大语言模型的出现带来新挑战,因其强大、易获取且成本低,可能被用于制作复杂垃圾邮件逃避传统过滤器。研究者开发管道测试 SpamAssassin 对经语言模型修改邮件的有效性,结果显示其会将高达 73.7%的此类邮件误分类为合法邮件,而简单字典替换攻击成功率仅 0.4%。这凸显了经语言模型修改的垃圾邮件的重大威胁及成本效益。该研究为当前垃圾邮件过滤器的漏洞及网络安全措施的持续改进提供了关键见解。

链接:

https://arxiv.org/abs/2408.14293

5. 检测人工智能缺陷:针对语言模型内部故障的目标驱动攻击

简介:大语言模型(LLMs)在人工智能领域的重要性日益凸显,但这些模型在预训练语料中可能包含有害内容,导致生成不适当的输出。为了提高LLMs的安全性,研究人员探索了检测模型内部缺陷的方法。目前的研究主要集中在越狱攻击上,这些攻击通过构建对抗性内容来诱导模型产生意外响应。然而,这些方法依赖于提示工程,既耗时又需要特别设计的问题。

为了解决这些挑战,研究人员提出了一种新的攻击范式,即目标驱动的攻击,它专注于直接引出目标响应,而不是优化提示。研究中引入了名为ToxDet的LLM,作为有毒内容的检测器。ToxDet能够根据目标有毒响应生成可能的问题和初步答案,以诱导目标模型产生与提供含义相当的有毒响应。ToxDet通过与目标LLM交互并接收奖励信号进行训练,利用强化学习优化过程。尽管ToxDet主要针对开源LLMs,但经过微调后,它也可以转移到攻击如GPT-4o这样的黑盒模型,并取得了显著结果。在AdvBench和HH-Harmless数据集上的实验结果证明了该方法在检测目标LLMs生成有害响应倾向方面的有效性。这不仅揭示了LLMs的潜在漏洞,还为研究人员提供了加强模型抵御此类攻击的宝贵资源。

链接:

https://arxiv.org/abs/2408.14853

6. 参数高效的量化专家混合体与视觉 - 语言指令调优在半导体电子显微图像分析中的应用

简介:研究者指出半导体在基础模型中研究不足,需增强半导体器件技术。为此,他们推出了 sLAVA,一个针对半导体制造的小型视觉语言助手,专注于电子显微镜图像分析。采用师生范式,以 GPT-4 等基础视觉语言模型为教师,为 sLAVA 创建遵循指令的多模态数据,解决数据稀缺问题,可在预算有限的消费级硬件上进行任务,且企业能在自身基础设施内用专有数据安全微调框架以保护知识产权。严格实验表明,该框架超越传统方法,能处理数据偏移并实现高通量筛选,有助于半导体制造中的电子显微镜图像分析,为企业提供了一种有效的解决方案,也为半导体技术发展提供了新的思路和方法。

链接:

https://arxiv.org/abs/2408.15305

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/422095.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

组播 2024 9 11

PIM(Protocol Independent Multicast)是一种常用的组播路由协议,其独立于底层的单播路由协议,能够在多种网络环境中有效地实现多播路由功能。PIM主要有两种模式:PIM Sparse Mode (PIM-SM) 和 PIM Dense Mode (PIM-DM)&…

DDoS对策是什么?详细解说DDoS攻击难以防御的理由和对策方法

攻击规模逐年增加的DDoS攻击。据相关调查介绍,2023年最大的攻击甚至达到了700Gbps。 为了抑制DDoS攻击的危害,采取适当的对策是很重要的。 特别是在网站显示花费时间或频繁出现504错误的情况下,可能已经受到了DDoS攻击,需要尽早采…

Spring面试

一、对Spring的理解 (一)Spring的发展史 (二)Spring的体系结构 (三)Spring相关组件 1.Spring和SpringMVC的关系 2.Spring和SpringBoot的关系 3.Spring和SpringCloud的关系 4.Spring和SpringSecurity的…

C语言基础——⑩③数据结构——②栈和队列

一、栈(Stack) 1、基本概念 栈是一种逻辑结构,是特殊的线性表。特殊在: 只能在固定的一端操作 只要满足上述条件,那么这种特殊的线性表就会呈现一种“后进先出”的逻辑,这种逻辑就被称为栈。栈 在生活中到处可见,比…

为什么企业需要数据目录?

想象一下,如果在没有目录系统的庞大图书馆里寻找一本特定的书,你可能会耗费无数个小时搜索,但最终却一无所获。 同理,企业的数据如果没有一个组织良好、易于搜索的系统,也无法充分发挥其潜力。企业数据目录能够简化这一…

Kafka 基础与架构理解

目录 前言 Kafka 基础概念 消息队列简介:Kafka 与传统消息队列(如 RabbitMQ、ActiveMQ)的对比 Kafka 的组件 Kafka 的工作原理:消息的生产、分发、消费流程 Kafka 系统架构 Kafka 的分布式架构设计 Leader-Follower 机制与…

进击J6:ResNeXt-50实战

🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 一、实验目的: 阅读ResNeXt论文,了解作者的构建思路对比之前介绍的ResNet50V2、DenseNet算法使用ResNeXt-50算法完成猴痘病识别 二、实…

jmeter之仅一次控制器

仅一次控制器作用: 不管线程组设置多少次循环,它下面的组件都只会执行一次 Tips:很多情况下需要登录才能访问其他接口,比如:商品列表、添加商品到购物车、购物车列表等,在多场景下,登录只需要…

【EJB】会话Bean(Session Bean)

单例会话****bean在每个应用程序中实例化一次,并存在于应用程序的生命周期中。单例会话bean是为单个企业bean实例在客户端之间共享和并发访问的环境而设计的。 单例会话Bean提供了与无状态会话Bean相似的功能,但与它们不同,因为每个应用程序…

【CanMV K230 AI视觉】人脸关键部位

【CanMV K230 AI视觉】人脸关键部位 人脸关键部位 (动态测试效果可以去下面网站自己看。) B站视频链接:已做成合集 抖音链接:已做成合集 人脸关键部位 人脸关键部位检测,主要检测脸部轮廓、眉毛、眼睛、鼻子和嘴巴&a…

【Kubernetes】K8s 的鉴权管理(二):基于属性 / 节点 / Webhook 的访问控制

K8s 的鉴权管理(二):基于属性 / 节点 / Webhook 的访问控制 1.基于属性的访问控制(ABAC 鉴权)2.基于节点的访问控制(node 鉴权)2.1 读取操作2.2 写入操作 3.基于 Webhook 的访问控制3.1 基于 We…

什么是 Grafana?

什么是 Grafana? Grafana 是一个功能强大的开源平台,用于创建、查看、查询和分析来自多个来源的数据。通过可视化仪表盘(Dashboard),它能够帮助用户监控实时数据、生成历史报告,甚至进行预测分析。Grafana…

深入解读Docker核心原理:Cgroups资源限制机制详解

在容器化技术中,除了资源的隔离,如何有效地控制和分配系统资源同样至关重要。Cgroups(Control Groups) 是Linux内核提供的一个强大机制,允许限制、监控和隔离进程组的系统资源使用情况。Cgroups是Docker实现容器资源限…

ffmpeg实现视频的合成与分割

视频合成与分割程序使用 作者开发了一款软件,可以实现对视频的合成和分割,界面如下: 播放时,可以选择多个视频源;在选中“保存视频”情况下,会将多个视频源合成一个视频。如果只取一个视频源中一段视频…

初识爬虫1

学习路线:爬虫基础知识-requests模块-数据提取-selenium-反爬与反反爬-MongoDB数据库-scrapy-appium。 对应视频链接(百度网盘):正在整理中 爬虫基础知识: 1.爬虫的概念 总结:模拟浏览器,发送请求,获取…

Minimax-秋招正式批-面经(SQL相关)

1. 谈谈对聚簇索引的理解 聚簇索引 InnoDB通过主键聚集数据,如果没有定义主键,InnoDB会选择非空的唯一索引代替。如果没有这样的索引,InnoDB会隐式定义一个主键来作为聚簇索引聚簇索引就是按照每张表的主键构造一颗B树,同时叶子…

挖耳勺可以和别人共用吗?口碑好的可视耳勺!

人体分泌的耳垢会有细菌,如果与别人共用挖耳勺很有可能会交叉感染,所以一般建议自己有专用的挖耳勺。小编可以给大家分享一款超好用又能实现一人一用的挖耳勺--可视挖耳勺,它有着高清内窥镜可以进入耳道实时查看情况,并且耳勺头采…

Unity人工智能开发学习心得

在Unity中进行人工智能研究与应用主要集中在几个关键领域,包括使用Unity ML-Agents插件进行强化学习、利用神经网络技术和深度学习技术训练AI,以及基于行为树技术设计游戏人工智能。 ‌使用Unity ML-Agents插件进行强化学习‌:Unity ML-Agent…

浏览器百科:网页存储篇-IndexedDB介绍(十)

1.引言 在现代网页开发中,数据存储需求日益增多和复杂,传统的客户端存储技术如localStorage和sessionStorage已难以满足大型数据的存储和管理需求。为了解决这一问题,HTML5 引入了 IndexedDB,在本篇《浏览器百科:网页…

Debug-027-el-tooltip组件的使用及注意事项

前言: 这两天,碰到这个饿了么的el-tooltip比较多。这个组件使用起来也挺简单的,常用于展示鼠标 hover 时的提示信息。但是有一些小点需要注意。这里不再机械化的介绍文档,不熟悉的话可以先看一下: https://element-pl…