【有啥问啥】弱监督学习新突破:格灵深瞳多标签聚类辨别(Multi-Label Clustering and Discrimination, MLCD)方法

MLCD

弱监督学习新突破:格灵深瞳多标签聚类辨别(Multi-Label Clustering and Discrimination, MLCD)方法

引言

在视觉大模型领域,如何有效利用海量无标签图像数据是一个亟待解决的问题。传统的深度学习模型依赖大量人工标注数据,而获取高质量的标注数据成本高昂,且覆盖面有限。因此,如何通过弱监督学习来降低对标注数据的依赖,提升视觉模型的泛化能力和语义理解能力,是当前研究的热点之一。

格灵深瞳提出的多标签聚类辨别(Multi-Label Clustering and Discrimination, MLCD)方法,提供了一种创新且有效的解决方案。MLCD通过聚类技术和多标签分类相结合的方式,在无需大量人工标注的情况下,提升了模型的语义理解能力和性能。这一方法在弱监督学习的背景下,通过利用海量的无标签数据,充分挖掘图像中的语义信息,使得视觉模型在多任务场景下表现出更好的性能。

MLCD方法详解

MLCD的核心思想在于:通过聚类将相似的图像分组,并为每个图像分配多个软标签,从而模拟多标签分类场景,训练出具备更强语义理解能力的视觉模型。

1. 特征聚类

  • 特征提取:MLCD首先使用预训练网络(如ResNet等)提取图像的特征向量。这些特征向量表示图像的高层次抽象信息,可以有效地表示图像的内容。
  • 初始聚类:接下来,MLCD使用特征聚类算法(如K-means、GMM等)将图像数据集划分为若干簇。每个簇可以看作是一个初步的类别,代表一类相似的图像。
  • 多标签辅助:与传统的单标签聚类不同,MLCD引入多标签机制,为每个图像分配多个聚类中心的软标签。这意味着一个图像可以同时属于多个簇,例如一张图像可能包含“猫”和“狗”等多个语义信息。

2. 软标签分配

  • 概率分配:MLCD为每个图像生成一个软标签向量,向量中的每个元素代表图像属于某一类的概率。这些概率值是基于图像与各个聚类中心之间的距离计算得出的。
  • 软标签优势:相比于硬标签(即图像只能属于单个类别),软标签允许图像同时属于多个类别,并且不同类别的权重有所区别。这种方式更真实地反映了图像中的复杂语义结构。

3. 多标签分类损失函数

  • 定制化损失函数:MLCD引入了一种定制化的多标签分类损失函数,鼓励模型在多标签场景下正确预测多个相关标签,同时抑制不相关标签。损失函数基于交叉熵,并加入正则化项来防止过拟合。

    • 传送门链接: 深入解析:机器学习中的过拟合与欠拟合
      例如,损失函数可表示为:

    L = − ∑ i = 1 N ∑ j = 1 M y i j log ⁡ ( p i j ) + λ ∑ i = 1 N ∣ ∣ θ i ∣ ∣ 2 L = -\sum_{i=1}^{N}\sum_{j=1}^{M} y_{ij} \log(p_{ij}) + \lambda \sum_{i=1}^{N} ||\theta_i||^2 L=i=1Nj=1Myijlog(pij)+λi=1N∣∣θi2

    其中, y i j y_{ij} yij 是第 i i i 张图像在第 j j j 类的真实标签, p i j p_{ij} pij 是模型预测的概率, λ \lambda λ 是正则化参数, θ i \theta_i θi 是模型的权重参数。该公式通过惩罚错误分类的预测概率,并对模型权重加以约束,来提高模型的泛化能力。

  • 损失函数优化:通过优化该损失函数,MLCD能够有效学习到具有更强判别力的特征,从而提高图像分类和识别的准确率。

举个栗子

假设我们在处理一个智能相册应用,它能够自动识别和分类照片中的物体。

1. 特征提取与聚类原理

假设你有一个包含大量照片的相册,这些照片中有各种各样的物体,比如猫、狗、汽车、风景等等。首先,MLCD方法会从这些照片中提取出特征,就像我们用放大镜观察每张照片的细节。提取的特征包含了图片的高层次信息,比如“这张图片看起来有很多猫的特征”或者“这张图片像是城市风景”。

接着,MLCD会对这些特征进行聚类。例如,将相似特征的照片分成一个组。比如,所有包含猫的照片被分到一个组,所有包含狗的照片被分到另一个组。这就像是我们将照片按主题归档。

2. 软标签分配原理

但是,有时候一张照片可能同时包含多个物体。比如,一张照片中既有猫也有狗。传统的分类方法可能只能选择一个标签,比如“猫”或“狗”。但MLCD方法使用软标签,允许每张照片同时有多个标签。对于那张同时有猫和狗的照片,MLCD可能会给它分配两个标签:“猫”和“狗”,每个标签还会有一个“权重”,表示这个标签的重要程度。例如,“猫”标签的权重是0.7,“狗”标签的权重是0.3。

3. 多标签分类损失函数原理

在训练过程中,MLCD方法会使用一个特别的“损失函数”来优化模型。这个损失函数就像是一个教练,它会对模型的预测结果进行评分,并给出改进建议。比如,如果模型预测一张猫狗混合的照片只有“猫”而没有“狗”,损失函数就会给模型一个“错误分数”,并鼓励它改进预测,以便在未来更准确地识别这些照片。

4. 实验小结

通过这样的训练,MLCD方法可以让模型在实际应用中表现更好。比如,当你使用智能相册时,它不仅能够准确地识别出照片中的猫和狗,还能识别出城市风景、海滩等背景内容,并将它们归类到相应的标签下。

5. 应用场景

  • 图像分类:你可以在智能相册中搜索“猫”和“狗”的照片,MLCD方法能帮助你找到包含这两种动物的所有照片。
  • 目标检测:如果你用这套技术进行视频监控,MLCD可以帮助你检测到视频中的多个物体,如同时识别并标记出行人和车辆。
  • 图像生成:在图像生成任务中,MLCD方法能让生成的图片更加符合实际场景中的复杂语义,比如在合成一张包含多种元素的图片时,能够更好地融合这些元素。

总之,MLCD方法就像一个聪明的分类助手,它不仅能识别照片中的单一物体,还能同时处理多个物体,提升了图像处理的智能化水平。

实验与结果

在ImageNet等大型数据集上的实验表明,MLCD方法相比于传统的弱监督学习方法在图像分类、目标检测等任务上均取得了显著的性能提升。

实验设置

  • 数据集:ImageNet, COCO等数据集
  • 模型架构:使用ResNet50作为预训练模型
  • 超参数设置:学习率0.001, batch size 256, 聚类中心数目为1000

性能对比

在ImageNet上的实验结果如下:

方法Top-1 准确率Top-5 准确率
传统方法76.5%93.2%
MLCD79.4%94.7%

通过引入软标签和多标签分类机制,MLCD能够更好地捕捉图像中的复杂语义信息,从而在分类任务中表现优异。

MLCD的优势

  • 充分利用无标签数据:MLCD能够有效地利用大量无标签数据,极大降低了对标注数据的依赖。这使得在大规模数据集上训练模型成为可能,同时避免了人工标注的高昂成本。
  • 增强语义理解:通过特征聚类和软标签分配,MLCD能够为图像注入丰富的语义信息,增强了模型对图像内容的理解能力。这使得模型不仅可以识别单一物体,还能同时识别图像中的多个语义。
  • 提升模型性能:MLCD在多个视觉任务上取得了显著性能提升,例如在ImageNet等大规模数据集上的图像分类精度显著优于传统方法。同时,它也可以作为预训练模型的增强手段,进一步提升在目标检测等任务中的表现。

MLCD的局限性

尽管MLCD表现出色,但其仍存在一些局限性:

  • 对噪声数据的敏感度:MLCD方法在面对含有噪声数据的图像时,可能会出现聚类中心分布不均或标签分配错误的情况,从而影响最终分类效果。
  • 计算复杂度:由于聚类过程涉及大量的特征比较和计算,MLCD在大规模数据集上的计算复杂度较高,可能需要较强的计算资源支持。

MLCD的应用场景

  • 图像分类:MLCD能够实现多标签图像分类,例如一张图像可以同时被标记为“猫”、“狗”和“室内场景”。
  • 目标检测:MLCD可以用于目标检测任务的预训练阶段,帮助检测器识别出多类物体并提高精度。
  • 图像生成:在图像生成任务中,MLCD通过注入丰富的语义信息,能够生成更加语义一致的图像。

实际应用案例

例如,在智能视频监控领域,MLCD方法可以有效地识别多个类别的物体,如同时检测出车辆、行人和交通标志,从而为交通管理提供精准的决策支持。

总结

格灵深瞳提出的MLCD方法,为弱监督学习提供了全新的解决方案。通过结合聚类技术和多标签分类,MLCD有效利用了海量无标签数据,增强了视觉模型的语义理解能力。这一方法在多个视觉任务上展现了出色的性能,具有广阔的应用前景。

未来展望

  • 更复杂的聚类算法:可以进一步探索如层次聚类、密度聚类等算法,提升聚类效果。
    • 传送门链接: 关于聚类算法(Clustering):你想要了解的都在这里
  • 多模态学习:将MLCD扩展到多模态学习领域,结合文本、音频等信息,提升模型的理解能力。
  • 自监督学习:MLCD可以与自监督学习结合,借助自监督预训练的强大泛化能力,进一步提升模型在弱监督场景下的表现。
    • 传送门链接: 机器学习中的自监督学习与无监督学习是什么意思?

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/428214.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LeetCode118:杨辉三角

题目链接&#xff1a;118. 杨辉三角 - 力扣&#xff08;LeetCode&#xff09; 代码如下 class Solution {public:vector<vector<int>> generate(int numRows) {vector<vector<int>> dp(numRows);vector<int> temp(numRows);for (int i 0; i &…

【PyTorch】autograd与逻辑回归

autograd – 自动求导系统 torch.autograd autograd torch.autograd.backward 功能&#xff1a;自动求取梯度 tensor&#xff1a;用于求导的张量&#xff0c;如lossretain_graph&#xff1a;保存计算图create_graph&#xff1a;创建导数计算图&#xff0c;用于高阶求导gra…

【计算机网络】TCP 协议——详解三次握手与四次挥手

文章目录 一、引言二、TCP1、TCP 的数据格式2、TCP 的三次握手3、TCP 的四次挥手4、TCP 的全双工通信 三、TCP 的状态转换1、TCP 连接的建立&#xff08;三次握手&#xff09;状态2、TCP 连接的终止&#xff08;四次挥手&#xff09;状态3、TCP 异常情况 一、引言 TCP与UDP的区…

外观模式详解:如何为复杂系统构建简洁的接口

&#x1f3af; 设计模式专栏&#xff0c;持续更新中 欢迎订阅&#xff1a;JAVA实现设计模式 &#x1f6e0;️ 希望小伙伴们一键三连&#xff0c;有问题私信都会回复&#xff0c;或者在评论区直接发言 外观模式 外观模式&#xff08;Facade Pattern&#xff09;为子系统中的一组…

基于协同过滤算法+PHP的新闻推荐系统

作者&#xff1a;计算机学姐 开发技术&#xff1a;SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等&#xff0c;“文末源码”。 专栏推荐&#xff1a;前后端分离项目源码、SpringBoot项目源码、SSM项目源码 系统展示 【2025最新】基于协同过滤算法PHPMySQL的新…

Liveweb视频汇聚平台支持GB28181转RTMP、HLS、RTSP、FLV格式播放方案

GB28181协议凭借其在安防流媒体行业独有的大统一地位&#xff0c;目前已经在各种安防项目上使用。雪亮工程、幼儿园监控、智慧工地、物流监控等等项目上目前都需要接入安防摄像头或平台进行直播、回放。而GB28181协议作为国家推荐标准&#xff0c;目前基本所有厂家的安防摄像头…

【可变模板参数】

文章目录 可变参数模板的概念可变参数模板的定义方式参数包的展开方式递归展开参数包逗号表达式展开参数包 STL容器中的emplace相关接口函数 可变参数模板的概念 可变参数模板是C11新增的最强大的特性之一&#xff0c;它对参数高度泛化&#xff0c;能够让我们创建可以接受可变…

VM虚拟机使用的镜像文件下载

文章目录 Windows系统进入微软官网下载工具以Windows10为例下载镜像文件 Windows系统 进入微软官网下载工具 微软中国官网&#xff1a;https://www.microsoft.com/zh-cn/ 以Windows10为例下载镜像文件 选择下载的路径 开始下载 安装windows10操作系统出现Time out问题及解决办…

【已解决】华为AR100-S路由器 恢复出厂后,找不到5G wifi的设置

前两帖讨论了华为AR100-S路由器&#xff1a; 一是用电脑浏览器访问web管理界面报错的解决&#xff0c;详情点这里&#xff01; https://blog.csdn.net/weixin_62598385/article/details/142215136 再就是如何回复出厂&#xff0c;也即如何复位&#xff0c; 详情点这里&#xff…

简明linux系统编程--互斥锁--TCP--UDP初识

目录 1.互斥锁 2.信号 2.1介绍 2.2信号的内核机制 3.linux网络编程概述 3.1一览七层协议 3.2一览数据传输过程 3.3四层网络模型 3.4服务端和客户端的数据交互 4.TCP服务端编程 5.TCP客户端编程 6.UDP服务端编程 7.UDP客户端编程 1.互斥锁 互斥锁也是和信号量一样&a…

自动化测试常用函数

目录 一、元素的定位 1、cssSelector 2、xpath &#xff08;1&#xff09;xpath 语法 1、获取HTML页面所有的节点 2、获取HTML页面指定的节点 3、获取一个节点中的直接子节点 4、获取一个节点的父节点 5、实现节点属性的匹配 6、使用指定索引的方式获取对应的节点内容…

鸿蒙OpenHarmony【轻量系统内核通信机制(消息队列)】子系统开发

消息队列 基本概念 消息队列又称队列&#xff0c;是一种任务间通信的机制。消息队列接收来自任务或中断的不固定长度消息&#xff0c;并根据不同的接口确定传递的消息是否存放在队列空间中。 任务能够从队列里面读取消息&#xff0c;当队列中的消息为空时&#xff0c;挂起读…

Linux--禁止root用户通过ssh直接登录

原文网址&#xff1a;Linux--禁止root用户通过ssh直接登录_IT利刃出鞘的博客-CSDN博客 简介 本文介绍Linux服务器怎样禁止root用户通过ssh直接登录。 为什么要禁止&#xff1f; 因为root用户是每个Linux系统都有的&#xff0c;黑客可以使用root用户名尝试不同的密码来暴力破…

ClickHouse 与 Quickwit 集成实现高效查询

1. 概述 在当今大数据分析领域&#xff0c;ClickHouse 作为一款高性能的列式数据库&#xff0c;以其出色的查询速度和对大规模数据的处理能力&#xff0c;广泛应用于在线分析处理 (OLAP) 场景。ClickHouse 的列式存储和并行计算能力使得它在处理结构化数据查询时极具优势&…

【Elasticsearch】-spring boot 依赖包冲突问题

<dependency><groupId>org.elasticsearch</groupId><artifactId>elasticsearch</artifactId><version>7.17.24</version></dependency> 在pom的配置中&#xff0c;只引入了elasticsearch-7.17.24 &#xff0c;但实际上会同时…

seq2seq翻译实战-Pytorch复现

&#x1f368; 本文为&#x1f517;365天深度学习训练营 中的学习记录博客&#x1f356; 原作者&#xff1a;K同学啊 code from __future__ import unicode_literals, print_function, division from io import open import unicodedata import string import re import rando…

半导体器件制造5G智能工厂数字孪生物联平台,推进制造业数字化转型

半导体器件制造行业作为高科技领域的核心驱动力&#xff0c;正积极探索和实践以5G智能工厂数字孪生平台为核心的新型制造模式。这一创新不仅极大地提升了生产效率与质量&#xff0c;更为制造业的未来发展绘制了一幅智能化、网络化的宏伟蓝图。 在半导体器件制造5G智能工厂中&a…

RabbitMQ 高级特性——发送方确认

文章目录 前言发送方确认confirm 确认模式return 退回模式 常见面试题 前言 前面我们学习了 RabbitMQ 中交换机、队列和消息的持久化&#xff0c;这样能够保证存储在 RabbitMQ Broker 中的交换机和队列中的消息实现持久化&#xff0c;就算 RabbitMQ 服务发生了重启或者是宕机&…

中间件知识点-消息中间件(Rabbitmq)一

消息中间件介绍 MQ的作用(优点)主要有以下三个方面&#xff1a; a.异步 b.解耦 c.削峰 MQ的作用(缺点)主要有以下三个方面&#xff1a; a.系统可用性降低 b.系统复杂度提高 c.存在消息一致性问题需要解决 备注&#xff1a; 引入MQ后系统的复杂度会大大提高。 以前服务之间可以…

【软件基础知识】什么是 API,详细解读

想象一下,你正在使用智能手机上的天气应用。你打开应用,瞬间就能看到实时天气、未来预报,甚至是空气质量指数。但你有没有想过,这些数据是如何神奇地出现在你的屏幕上的?答案就在三个字母中:API。 API,全称Application Programming Interface(应用程序编程接口),是现代软件世…