2015年国赛高教杯数学建模B题互联网+时代的出租车资源配置解题全过程文档及程序

2015年国赛高教杯数学建模

B题 互联网+时代的出租车资源配置

  出租车是市民出行的重要交通工具之一,“打车难”是人们关注的一个社会热点问题。随着“互联网+”时代的到来,有多家公司依托移动互联网建立了打车软件服务平台,实现了乘客与出租车司机之间的信息互通,同时推出了多种出租车的补贴方案。
  请你们搜集相关数据,建立数学模型研究如下问题:
   (1) 试建立合理的指标,并分析不同时空出租车资源的“供求匹配”程度。
   (2) 分析各公司的出租车补贴方案是否对“缓解打车难”有帮助?
   (3) 如果要创建一个新的打车软件服务平台,你们将设计什么样的补贴方案,并论证其合理性。

整体求解过程概述(摘要)

  本文研究了“互联网+”时代出租车资源的优化配置问题。通过模糊综合评价和多元回归拟合方法给出了供求匹配评价模型,提出了基于打车难度系数的出租车动态补贴方案。
  对于不同时空出租车资源的供求匹配程度问题,本文从宏观和微观两个角度进行评价。宏观上引入里程利用率、车辆满载率、万人拥有量作为评价指标,采用模糊综合评价的方法,求出了深圳、西安、拉萨这三个城市的评价分数(分别为0.1868、0.3046、0.7029),即西安、拉萨的供求平衡比深圳要好。微观上本文以深圳市为例,利用供、求的影响因素,建立了基于多元回归拟合的供求匹配模型,通过拟合供给和需求的表达式,采用供求比作为供求匹配程度的衡量指标,求解不同时空(高峰期、低谷期、拥堵区、非拥堵区)的供求比,结果分别为0.7046、1.6037、0.6886、1.5813,结果表明:高峰期的供求比远小于低谷期,拥堵区的供求比远小于非拥堵区。
  对于现有补贴方案能否缓解打车难的问题,本文首先分析了补贴方案对降低司机拒单率,提高乘客拼车率的影响。依据司机拒单率、乘客拼车率与司机的补贴、乘客补贴的正负相关性,本文分别使用高斯分布模型和Logit模型求解函数表达式。进而通过拒单率、拼车率对问题一的供应量表达式进行改进,构建打车难度系数评价模型。针对深圳市2014年9月5号的统计数据,求解可得总体打车难度系数在不补贴时为 0.2816,在快的打车的补贴模式下为 0.1885,在滴滴打车补贴模式下为0.2030。仿真结果表明:补贴后乘客、出租车的成功匹配率提高了11%左右。 在设计合理的补贴方案时,本文综合考虑了社会供求关系和公司补贴金额这两个因素。依据现行的补贴方案,采用等步长逐步搜索法,求出使得供求匹配最佳时,司机和乘客的最优补贴金额(司机11.4元每单,乘客15.4元每单)。接着,本文给出供求比置信区间(0.8—1),以解决供求匹配最佳导致补贴费用过高的问题,此时求得供求比为0.8,司机补贴7.3元每单,乘客不补贴,将其定义为基础补贴。为权衡供求和补贴金额,建立基于供求优化的动态补贴模型,使实际补贴在基础补贴的前提下浮动小于 5元。最后,本文结合Logit模型及经济学原理,求解总补贴金额的函数表达式。仿真结果表明,相对于不补贴的情况,新的补贴方案下供求匹配度提高了34.62%左右。

模型假设:

  1、出租车司机收入按正常打表计算,不考虑消费者额外给的小费。
  2、司机认为利益受损失不会接单,即不会前往顾客所在地。
  3、司机一旦到达乘客所在处就表示一定接单。
  4、考虑现实生活中的拒单、拼车等实际情况。
  5、顾客按单计算,即两人一起拼车记为一单。
  6、每一单的路程均大于起步价所含路程。
  7、采用对乘客和司机进行补贴的方案可以有效地平衡供求。
  8、不考虑突发情况,极端自然状况导致的绕行和停车。

问题分析:

  出租车问题与人民生活密切相关,但现实生活中往往出现打车难的现象。我们分析打车难的原因主要是供求不匹配。首先,针对打车难的现状,我们可以从多个方面得到评价指标,对不同时空的供求匹配程度做出评价。我们可以通过供求匹配指标,求出补贴前后的打车难度系数,分析能否缓解打车难。为了进一步解决供求匹配问题,同时考虑到软件公司的补贴花费,我们可以设计基于多因素的动态补贴方案,并通过模拟仿真,判断补贴方案推行前后,打车难的问题是否得到缓解。
  问题一的分析
  在分析不同时空出租车资源的“供求匹配”程度时,考虑到时空既可以指不同的城市、年份,又可以指某个城市内部的不同区域、时间段,所以我们从宏观和微观这两个角度来分析这个问题。从宏观上看,随着“互联网+”时代的到来,打车软件使用率明显增加,从而改善了供求关系。而在同一年中,一线、二线、三线城市的出租车供求匹配程度同样差异巨大。分析可知,供求的主要体现指标为:里程利用率、车辆满载率、万人拥有量。我们采用模糊综合评价的方法,得到不同城市的供求匹配度。从微观上看,我们选取某个城市(深圳)作为研究对象,从乘客和出租车司机这两个角度分析影响供求的因素。通过数据可以拟合出供应和需求的函数表达式,就可以得到供求比。对于不同时空的分析,我们选取高峰期、低谷期、拥堵区和非拥堵区,分别计算其供求比,评价不同时空的供求匹配程度。
  问题二的分析
  在分析出租车公司的补贴方案是否对“缓解打车难”有帮助时,首先需要对打车难度进行界定,然后再分析补贴方案实施前后,打车难度的变化。考虑到打车难的原因主要为出租车供不应求,司机可能会拒单,乘客可能会拒绝拼车,因此我们利用第一问的供求匹配模型,引入拒单率、拼车率来构建打车难度系数关系式。由常识可知,拒单率、拼车率与补贴分别是负相关和正相关的,我们利用概率模型就可以得到其函数表达式。
  通过查阅资料,我们可以得到快的打车和滴滴打车的现行补贴方案。由于对司机和乘客进行补贴会使得拒单量和拼车率发生变化,所以我们可以求出补贴前后的拒单率和拼车率,再结合打车难度系数关系式,计算出具体结果从而判断补贴是否能有效缓解打车难。但是,考虑到打车软件的使用群众多为中青年,我们可以分析打车难度系数与年龄的关系,从而得到更加符合实际的模型。为了更直观地分析补贴对打车难度的影响,我们还可以进行仿真实验。
  问题三的分析
  首先需要分析补贴的目的,我们认为补贴会对社会和软件公司造成影响,第一、补贴能够调节供求匹配度,第二、从软件公司利益的角度,要尽可能使得补贴金额少。所以我们从这两方面进行综合考虑设计补贴方案。 经过调查发现,现有的补贴方案是按接单数进行补贴,所以我们通过接单数对乘客和司机分别补贴。通过分析可知,补贴对乘客的影响因素为等待时间,补贴对司机的影响因素为堵车时间及油费,因此我们可以通过这些因素构建动态补贴模型对补贴金额进行适当调整。 在设计具体的补贴方案时,我们可以从第二问中公司现行的补贴方案出发,通过对补贴金额进行调整,搜索出供求匹配程度为0.8~1的最佳补贴金额范围。在此置信区间内时,我们寻找出尽可能使得软件公司的补贴花费最小的最佳补贴金额,可以作为基础补贴金额。在基础补贴金额上,再进行优化供求的动态调整。与问题二类似,我们可以使用仿真来检验新的补贴方案下供求匹配程度是否得到改善。

模型的建立与求解整体论文缩略图

在这里插入图片描述
在这里插入图片描述

全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

程序代码:

%第三问搜索算法 
functionminQ = brute_force(G,F,phi,lambda) 
minQ=1000; 
fori = 1:301 % p2 
for j = 1:301 % p1 
%         if abs((G(i)*(0.75*lambda(j)+1)-G(i)*0.25*phi(i))/F(j)
1)<maxQ 
%             maxQ = abs((G(i)*(0.75*lambda(j)+1)
G(i)*0.25*phi(i))/F(j)-1); 
%             maxp1 = (j-1)/10; 
%             maxp2 = (i-1)/10; 
%         end 
%   ´ò×¢Ê͵ÄÊǵÚÈýÎÊ×ʼµÄµ¥²½ËÑË÷´úÂë 
if abs((G(i)*(0.75*lambda(j)+1)-G(i)*0.25*phi(i))/F(j)-1)<0.2 
plot((j-1)/10,(i-1)/10,'b.'); 
holdon; 
ifi+j<minQ 
minQ = i+j; 
end 
end 
end 
end
% 第二问仿真 
functioncnt = fangzhen(people_bonus,driver_bonus) 
ifnargin< 2 
q1 = 0 ; q2 = 0; 
else 
q1 = driver_bonus;q2 = people_bonus; 
end 
car_pos1 = rand(20,1); 
car_pos1 = [ones(20,1).*2000,car_pos1.*6000]; 
car_pos2 = rand(20,1); 
car_pos2 = [ones(20,1).*4000,car_pos2.*6000]; 
car_pos3 = rand(20,1); 
car_pos3 = [car_pos3.*6000,ones(20,1).*2000]; 
car_pos4 = rand(20,1); 
car_pos4 = [car_pos4.*6000,ones(20,1).*4000]; 
car_pos = [[car_pos1;car_pos2;car_pos3;car_pos4;],ones(80,1)]; 
car_pos_t = car_pos; 
car_pos1 = rand(25,1); 
car_pos1 = [ones(25,1).*2000,car_pos1.*6000]; 
car_pos2 = rand(25,1); 
car_pos2 = [ones(25,1).*4000,car_pos2.*6000]; 
car_pos3 = rand(25,1); 
car_pos3 = [car_pos3.*6000,ones(25,1).*2000]; 
car_pos4 = rand(25,1); 
car_pos4 = [car_pos4.*6000,ones(25,1).*4000]; 
p_pos = [[car_pos1;car_pos2;car_pos3;car_pos4;],ones(100,1)]; 
p_pos_t = p_pos; 
figure(1) 
holdon 
d = 200;cnt = 0; 
fori = 1:80 
nowbest = [d,0]; 
for j = 1:100 
ifp_pos(j,3)==0  
continue; 
end 
delta = abs(car_pos(i,1)-p_pos(j,1)) + abs(car_pos(i,2)
p_pos(j,2)); 
if delta <nowbest(1) 
nowbest(2) = j; 
nowbest(1) = delta; 
end 
end 
ifnowbest(1) < d &&nowbest(2) > 0 
cnt = cnt + 1; 
p_pos(nowbest(2),3) = 0; 
end 
end 
cnt% ûÓв¹Ìù 
t_p_pos = p_pos; 
holdon 
p_pos = p_pos_t; 
car_pos = car_pos_t; 
d = 310;cnt = 0; 
fori = 1:80 
nowbest = [d,0]; 
for j = 1:100 
ifp_pos(j,3)==0  
continue; 
end 
delta = abs(car_pos(i,1)-p_pos(j,1)) + abs(car_pos(i,2)
p_pos(j,2)); 
if delta <nowbest(1) 
nowbest(2) = j; 
nowbest(1) = delta; 
end 
end
ifnowbest(1) < d &&nowbest(2) > 0 
cnt = cnt + 1; 
p_pos(nowbest(2),3) = 0; 
end 
end 
fori = 1:100 
ift_p_pos(i,3)==0 
plot(t_p_pos(i,1),t_p_pos(i,2),'go'); 
elseifp_pos(i,3)==0 
plot(p_pos(i,1),p_pos(i,2),'r*'); 
end 
end 
cnt 
figure(2) 
holdon 
p_pos = p_pos_t; 
car_pos = car_pos_t; 
d = 300;cnt = 0; 
fori = 1:80 
nowbest = [d,0]; 
for j = 1:100 
ifp_pos(j,3)==0  
continue; 
end 
delta = abs(car_pos(i,1)-p_pos(j,1)) + abs(car_pos(i,2)
p_pos(j,2)); 
if delta <nowbest(1) 
nowbest(2) = j; 
nowbest(1) = delta; 
end 
end 
ifnowbest(1) < d &&nowbest(2) > 0 
cnt = cnt + 1; 
p_pos(nowbest(2),3) = 0; 
end 
end 
fori = 1:100 
ift_p_pos(i,3)==0 
plot(t_p_pos(i,1),t_p_pos(i,2),'go'); 
elseifp_pos(i,3)==0 
plot(p_pos(i,1),p_pos(i,2),'r*') 
end 
end 
cnt 
end
全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/434769.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Spring-bean实例化的方式

前言 什么是bean的实例化&#xff1f; 通常我们使用spring管理java的对象&#xff0c;一般称这个java对象为一个实例化的bean。bean的实例化方式&#xff0c;实际上就是spring创建并管理java对象实例的方式 bean的实例化方式 在Java和Spring框架的上下文中&#xff0c;Bean的实…

医院安保巡更管理应用二维码无纸化巡更方式

医院安保巡查是维护医院秩序安全的重中之重&#xff0c;在确保医院的安全运行&#xff0c;预防和减少安全事故的发生。通过定期的安全巡查&#xff0c;可以及时发现和解决潜在的安全隐患&#xff0c;保障医护人员和患者的安全。例如&#xff1a;‌安全疏散通道、‌监控设备‌、…

ACDsee简体中文版网盘资源下载(含教程)

如大家所熟悉的&#xff0c;ACDSee是一款集看图、编辑和管理于一体的软件&#xff0c;其凭借着打开速度快、管理功能强、操作界面友好简单等等优势&#xff0c;广受用户的喜欢。目前最新为ACDSee 2024版本。 一、文件管理 ACDSee数据库在文件管理方面表现出色。它可以帮助用户…

四气两尘监测站中空气质量传感器推荐

在快速发展的工业化进程中&#xff0c;空气质量已成为衡量一个地区环境健康水平的重要指标。随着公众环保意识的增强&#xff0c;对空气质量的关注不再局限于直观的蓝天白云&#xff0c;而是深入到更为细微、复杂的污染物层面&#xff0c;其中&#xff0c;“四气两尘”便是这一…

操作平台使用中应每月不少于几次定期检查?

在当今数字化时代&#xff0c;操作平台作为企业与个人日常运营的核心载体&#xff0c;其稳定性和安全性直接关系到业务的高效运行与数据的严密保护。因此&#xff0c;定期进行操作平台的检查与维护&#xff0c;成为了不可忽视的重要环节。特别是&#xff0c;确保每月进行不少于…

JAVA的版本

Java的版本开始还正常&#xff1a;1.0 ->1.1 顺序增加&#xff0c;到了2004年&#xff0c;不知什么原因1.5又有了新的平行名字5&#xff0c;这样Java 1.6对应Java6&#xff0c;一直到Java1.8 对应 Java8&#xff0c;然后到在2017年彻底没了Java1.9,只有Java9了。好吧这可以忍…

【初阶数据结构】排序——选择排序

目录 前言选择排序堆排序 前言 对于常见的排序算法有以下几种&#xff1a; 下面这节我们来看选择排序算法。 选择排序 基本思想&#xff1a;   每一次从待排序的数据元素中遍历选出最大&#xff08;或最小&#xff09;的元素放在序列的起始位置&#xff0c;直到全部待排序…

828华为云征文 | 使用 Memtester 对华为云 X 实例进行内存性能测试

目录 前言 1 华为云X实例介绍 2 Memtester 简介 2.1 什么是Memtester 2.2 安装 Memtester 3 测试方案设计 3.1 测试目标 3.2 测试环境 3.3 测试命令 4 测试数据及性能分析 4.1 带宽测试结果 4.2 延迟测试结果 5 性能瓶颈与优化建议 6 总结 前言 在云计算的应用场…

从0学习React(2)

经过上一篇的文章&#xff0c;对index.tsx文件的每行代码进行了一个简单的分析之后&#xff0c;我大概对React有了一个简单的了解。虽然也是一知半解&#xff0c;但是起码在心里已经对React有了一个基本的概念。这篇文章&#xff0c;我就讲一下关于React中index.tsx的大致框架。…

以太网交换安全:端口安全

一、端口安全介绍 端口安全是一种网络设备防护措施&#xff0c;通过将接口学习到的动态MAC地址转换为安全MAC地址&#xff08;包括安全动态MAC和Sticky MAC&#xff09;&#xff0c;阻止除安全MAC和静态MAC之外的主机通过本接口和设备通信&#xff0c;从而增强设备的安全性。以…

【运维资料】系统运维管理方案(Doc原件2024)

1 编制目的 2 系统运行维护 2.1 系统运维内容 2.2 日常运行维护方案 2.2.1 日常巡检 2.2.2 状态监控 2.2.3 系统优化 2.2.4 软件系统问题处理及升级 2.2.5 系统数据库管理维护 2.2.6 灾难恢复 2.3 应急运行维护方案 2.3.1 启动应急流程 2.3.2 成立应急小组 2.3.3 应急处理过程 …

产品管理 - 互联网产品(3) : 迭代管理

1、需求文档的每一个迭代版本号&#xff0c;都需要标识出来 根据软件文档的配置标准&#xff1a; 上线时&#xff1a;X.Y 修改时&#xff1a;X.YZ 草稿时&#xff1a;0.XY 2、每一个项目干系人&#xff0c;都可以访问到最新版本的需求。 所有角色必须要有统的一认知。这是需求…

【Canvas与诗词】秋夕.杜牧(银烛秋光冷画屏......)

【成图】 【代码】 <!DOCTYPE html> <html lang"utf-8"> <meta http-equiv"Content-Type" content"text/html; charsetutf-8"/> <head><title>金六边形外圈绿色底录杜牧秋夕诗</title><style type"…

PHP爬虫:获取商品销量详情API的利器

在电子商务时代&#xff0c;商品的销量数据对于商家来说至关重要。它不仅能够帮助商家了解市场动态&#xff0c;还能够指导库存管理和营销策略。PHP作为一种流行的服务器端脚本语言&#xff0c;结合其强大的HTTP请求处理能力&#xff0c;可以有效地用于编写爬虫程序&#xff0c…

Defining Smart Contract Defects on Ethereum论文解读

背景 这一部分介绍了智能合约的概念和基础知识&#xff0c;以及 Solidity 编程语言。 智能合约&#xff1a;定义了智能合约作为一种运行在区块链上的程序&#xff0c;它能够在无需第三方干预的情况下自动执行合同条款。智能合约的不可变性&#xff1a;强调了智能合约一旦部署…

Python in Excel作图分析实战!

Excel 中的 Python 现已正式发布&#xff0c;适用于 Microsoft 365 商业版和企业版的 Windows 用户。去年 8 月&#xff0c;微软与 Anaconda 合作&#xff0c;通过集成 Python 为 Excel 引入了一个令人兴奋的新增功能&#xff0c;从而可以将 Python 和 Excel 分析无缝结合到同一…

开放原子开源基金会网站上的开源项目Opns存在缓冲区溢出缺陷

最近在开放原子开源基金会网站上&#xff0c;看到一些开源项目&#xff0c;之前分析出华为的鸿蒙操作系统代码&#xff0c;没有发现有价值的安全漏洞。现在&#xff0c;下载上面的Onps开源网络协议栈&#xff0c;既然是通讯所使用的软件&#xff0c;其质量应该值得信任呢&#…

MySQL - 进阶篇

一、存储引擎 1. MySQL体系结构 2. 存储引擎简介 3. 存储引擎特点 4. 存储引擎选择 二、索引 1. 索引概述 2. 索引结构 3. 索引分类 4. 索引语法 5. SQL性能分析 6. 索引使用 7. 索引设计原则 三、SQL优化 1. 插入数据 2. 主键优化 3. order by优化 4. group by优化 5. limi…

【JavaEE】——线程池大总结

阿华代码&#xff0c;不是逆风&#xff0c;就是我疯&#xff0c; 你们的点赞收藏是我前进最大的动力&#xff01;&#xff01;希望本文内容能够帮助到你&#xff01; 目录 引入&#xff1a;问题引入 一&#xff1a;解决方案 1&#xff1a;方案一——协程/纤程 &#xff08;1…

CST仿真分析:圆柱形谐振腔的模式分析

波导谐振器一般可以由波导两端短路形成&#xff0c;矩形和圆柱形谐振腔比较常见。矩形谐振腔模式的表示&#xff0c;是从波导的TEmn和TMmn变成了TEmnp和TMmnp&#xff0c;p是沿z方向的周期。之所以我们这里分析圆柱形&#xff0c;一是三个下角标更不容易理解&#xff08;TEnip和…