目录
1 环境准备
1.1 安装rust
1.2 安装Android Studio
1.3 设置环境变量
2 转换模型
2.1 安装mlc-llm
2.2 (可选)转换参数
2.3 (可选)生成配置
2.4 (可选)上传到huggingface
2.5 (可选) 测试转换的模型
3 打包运行
3.1 修改配置文件
3.2 运行打包命令
3.3 创建签名
3.4 修改gradle配置
3.5 命令行编译
3.6 运行体验
本文是对书生大模型L3-彩蛋岛-InternLM 1.8B 模型 Android 端侧部署实践部分的学习和实现,学习地址如下:
学习地址:学员闯关手册 - 飞书云文档 (feishu.cn)
1 环境准备
1.1 安装rust
参考: Other Installation Methods - Rust Forge。
使用了国内的镜像,出现选项直接Enter:
export RUSTUP_DIST_SERVER=https://mirrors.ustc.edu.cn/rust-static
export RUSTUP_UPDATE_ROOT=https://mirrors.ustc.edu.cn/rust-static/rustup
curl --proto '=https' --tlsv1.2 -sSf https://mirrors.ustc.edu.cn/misc/rustup-install.sh | sh
1.2 安装Android Studio
参考 :https://developer.android.com/studio。
mkdir -p /root/android && cd /root/android
wget https://redirector.gvt1.com/edgedl/android/studio/ide-zips/2024.1.1.12/android-studio-2024.1.1.12-linux.tar.gz
tar -xvzf android-studio-2024.1.1.12-linux.tar.gz
cd android-studio
wget https://dl.google.com/android/repository/commandlinetools-linux-11076708_latest.zip?hl=zh-cn
unzip commandlinetools-linux-11076708_latest.zip\?hl\=zh-cn
export JAVA_HOME=/root/android/android-studio/jbr
cmdline-tools/bin/sdkmanager "ndk;27.0.12077973" "cmake;3.22.1" "platforms;android-34" "build-tools;33.0.1" --sdk_root='sdk'
1.3 设置环境变量
. "$HOME/.cargo/env"
export ANDROID_NDK=/root/android/android-studio/sdk/ndk/27.0.12077973
export TVM_NDK_CC=$ANDROID_NDK/toolchains/llvm/prebuilt/linux-x86_64/bin/aarch64-linux-android24-clang
export JAVA_HOME=/root/android/android-studio/jbr
export ANDROID_HOME=/root/android/android-studio/sdk
export PATH=/usr/local/cuda-12/bin:$PATH
export PATH=/root/android/android-studio/sdk/cmake/3.22.1/bin:$PATH
2 转换模型
2.1 安装mlc-llm
参考:https://llm.mlc.ai/docs/install/mlc_llm.html,安装mlc-llm
可能需要代理。
安装pytorch
部分也可以使用其他包含torch
的conda
环境。
conda create --name mlc-prebuilt python=3.11
conda activate mlc-prebuilt
conda install -c conda-forge git-lfs
conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia
python -m pip install --pre -U -f https://mlc.ai/wheels mlc-llm-nightly-cu122 mlc-ai-nightly-cu122
测试如下输出说明安装正确:
python -c "import mlc_llm; print(mlc_llm)"
克隆项目:
git clone https://github.com/mlc-ai/mlc-llm.git
cd mlc-llm
git submodule update --init --recursive
2.2 (可选)转换参数
(如果不想上传到huggingface可以跳过这一步,有公开上传的)
使用 mlc_llm
的 convert_weight
对模型参数进行转换和量化,转换后的参数可以跨平台使用。
mkdir -p /root/models/
ln -s /share/new_models/Shanghai_AI_Laboratory/internlm2_5-1_8b-chat /root/models/internlm2_5-1_8b-chat
cd android/MLCChat
export TVM_SOURCE_DIR=/root/android/mlc-llm/3rdparty/tvm
export MLC_LLM_SOURCE_DIR=/root/android/mlc-llm
mlc_llm convert_weight /root/models/internlm2_5-1_8b-chat/ \--quantization q4f16_1 \-o dist/internlm2_5-1_8b-chat-q4f16_1-MLC
2.3 (可选)生成配置
(如果不想上传到huggingface可以跳过这一步,有公开上传的)
使用 mlc_llm
的 gen_config
生成 mlc-chat-config.json
并处理 tokenizer。
出现提示时输入y。
mlc_llm gen_config /root/models/internlm2_5-1_8b-chat/ \--quantization q4f16_1 --conv-template chatml \-o dist/internlm2_5-1_8b-chat-q4f16_1-MLC
Do you wish to run the custom code? [y/N] y
2.4 (可选)上传到huggingface
上传这一步需要能访问huggingface,可能需要部署代理并耗费一定流量。
具体方法可以参考网上的大量教程,如果不想上传到huggingface可以跳过这一步,直接在接下来的配置中使用如下链接的模型(和文档中的转换方法一样) https://huggingface.co/timws/internlm2_5-1_8b-chat-q4f16_1-MLC。
2.5 (可选) 测试转换的模型
在打包之前可以测试模型效果,需要编译成二进制文件。
在个人电脑上运行测试代码正常,InternStudio上暂未成功。
mlc_llm compile ./dist/internlm2_5-1_8b-chat-q4f16_1-MLC/mlc-chat-config.json \--device cuda -o dist/libs/internlm2_5-1_8b-chat-q4f16_1-MLC-cuda.so
测试编译的模型是否符合预期,手机端运行的效果和测试效果接近:
from mlc_llm import MLCEngine# Create engine
engine = MLCEngine(model="./dist/internlm2_5-1_8b-chat-q4f16_1-MLC", model_lib="./dist/libs/internlm2_5-1_8b-chat-q4f16_1-MLC-cuda.so")# Run chat completion in OpenAI API.
print(engine)
for response in engine.chat.completions.create(messages=[{"role": "user", "content": "你是谁?"}],stream=True
):for choice in response.choices:print(choice.delta.content, end="", flush=True)
print("\n")
engine.terminate()
3 打包运行
3.1 修改配置文件
修改mlc-package-config.json
参考如下:
{"device": "android","model_list": [{"model": "HF://timws/internlm2_5-1_8b-chat-q4f16_1-MLC","estimated_vram_bytes": 3980990464,"model_id": "internlm2_5-1_8b-chat-q4f16_1-MLC"},{"model": "HF://mlc-ai/gemma-2b-it-q4f16_1-MLC","model_id": "gemma-2b-q4f16_1-MLC","estimated_vram_bytes": 3980990464}]
}
3.2 运行打包命令
这一步需要能访问huggingface,可能需要部署代理:
mlc_llm package
3.3 创建签名
cd /root/android/mlc-llm/android/MLCChat
/root/android/android-studio/jbr/bin/keytool -genkey -v -keystore my-release-key.jks -keyalg RSA -keysize 2048 -validity 10000
Enter keystore password:
Re-enter new password:
What is your first and last name?[Unknown]: Any
What is the name of your organizational unit?[Unknown]: Any
What is the name of your organization?[Unknown]: Any
What is the name of your City or Locality?[Unknown]: Any
What is the name of your State or Province?[Unknown]: Any
What is the two-letter country code for this unit?[Unknown]: CN
Is CN=Any, OU=Any, O=Any, L=Any, ST=Any, C=CN correct?[no]: yesGenerating 2,048 bit RSA key pair and self-signed certificate (SHA256withRSA) with a validity of 10,000 daysfor: CN=Any, OU=Any, O=Any, L=Any, ST=Any, C=CN
[Storing my-release-key.jks]
3.4 修改gradle配置
如果是本地可以WIFI或USB调试不用签名,在服务器构建需要签名 修改app/build.gradle
为如下内容,主要是增加了签名部分,注意确认签名文件的位置:
plugins {id 'com.android.application'id 'org.jetbrains.kotlin.android'
}android {namespace 'ai.mlc.mlcchat'compileSdk 34defaultConfig {applicationId "ai.mlc.mlcchat"minSdk 26targetSdk 33versionCode 1versionName "1.0"testInstrumentationRunner "androidx.test.runner.AndroidJUnitRunner"vectorDrawables {useSupportLibrary true}}compileOptions {sourceCompatibility JavaVersion.VERSION_1_8targetCompatibility JavaVersion.VERSION_1_8}kotlinOptions {jvmTarget = '1.8'}buildFeatures {compose true}composeOptions {kotlinCompilerExtensionVersion '1.4.3'}packagingOptions {resources {excludes += '/META-INF/{AL2.0,LGPL2.1}'}}signingConfigs {release {storeFile file("/root/android/mlc-llm/android/MLCChat/my-release-key.jks")storePassword "123456"keyAlias "mykey"keyPassword "123456"}}buildTypes {release {minifyEnabled falseproguardFiles getDefaultProguardFile('proguard-android-optimize.txt'), 'proguard-rules.pro'signingConfig signingConfigs.release}}
}dependencies {implementation project(":mlc4j")implementation 'androidx.core:core-ktx:1.10.1'implementation 'androidx.lifecycle:lifecycle-runtime-ktx:2.6.1'implementation 'androidx.activity:activity-compose:1.7.1'implementation platform('androidx.compose:compose-bom:2022.10.00')implementation 'androidx.lifecycle:lifecycle-viewmodel-compose:2.6.1'implementation 'androidx.compose.ui:ui'implementation 'androidx.compose.ui:ui-graphics'implementation 'androidx.compose.ui:ui-tooling-preview'implementation 'androidx.compose.material3:material3:1.1.0'implementation 'androidx.compose.material:material-icons-extended'implementation 'androidx.appcompat:appcompat:1.6.1'implementation 'androidx.navigation:navigation-compose:2.5.3'implementation 'com.google.code.gson:gson:2.10.1'implementation fileTree(dir: 'src/main/libs', include: ['*.aar', '*.jar'], exclude: [])testImplementation 'junit:junit:4.13.2'androidTestImplementation 'androidx.test.ext:junit:1.1.5'androidTestImplementation 'androidx.test.espresso:espresso-core:3.5.1'androidTestImplementation platform('androidx.compose:compose-bom:2022.10.00')androidTestImplementation 'androidx.compose.ui:ui-test-junit4'debugImplementation 'androidx.compose.ui:ui-tooling'debugImplementation 'androidx.compose.ui:ui-test-manifest'}
3.5 命令行编译
运行编译命令,完成后在app/build/outputs/apk/release
生成app-release.apk
安装包,下载到手机上运行 运行App需要能访问huggingface下载模型(参考文档中的bundle方法需要ADB刷入模型数据):
./gradlew assembleRelease
3.6 运行体验
- 运行App需要能访问huggingface下载模型
- 需要大概4G运行内存
- 如果运行闪退,和可能是下载不完整可以删除重新下载