对比学习训练是如何进行的

对比学习(Contrastive Learning)是一种自监督学习的方法,旨在通过拉近相似样本的表示、拉远不相似样本的表示来学习特征表示。在训练过程中,模型并不依赖标签,而是通过样本之间的相似性进行学习。以下是对比学习的基本原理和具体的训练流程:

1. 基本原理

对比学习的核心目标是通过构造正样本对(相似样本)和负样本对(不相似样本),让模型学习到对相似样本的特征表示更接近,而对不相似样本的特征表示更远。常用的对比学习方法有 SimCLR、MoCo 等。

  • 正样本对:指的是经过不同增强方式得到的同一图像的不同视角,或在一些情况下是语义上相关的图像对。
  • 负样本对:指的是不同图像对,它们在语义上或像素空间上不相关。

2. 对比学习的训练流程

以MoCo为例:
在这里插入图片描述

其中momentum encoder是动量编码器,将encoder中的k的参数更新过程使用动量公式来约束,在MoCo中,作者将m设置为0.99(即momentum encoder中k的参数除了刚开始赋值给他,encoder不进行反向传播更新,往后全靠自己更新),这样就可以使得k的参数更新更依赖于之前k的参数了。

步骤1:样本增强

  • 对每个输入样本(例如图像),通过数据增强(如随机裁剪、旋转、颜色扰动等)生成多个视图。每个样本经过增强后形成一个正样本对,即该样本的两个不同增强版本。

步骤2:特征提取

  • 将增强后的样本输入到神经网络(如卷积神经网络或 Transformer)中,提取它们的特征表示。特征提取器通常不带标签地训练,模型在这个过程中学习到数据的潜在结构。

步骤3:相似性度量

  • 对每个样本对,计算它们的特征表示之间的相似度。通常使用余弦相似度(Cosine Similarity)来衡量特征向量之间的相似性。

    • 对于正样本对(相同样本的不同视图),希望它们的特征表示尽量接近,即相似度高。
    • 对于负样本对(不同样本),希望它们的特征表示尽量远,即相似度低。

步骤4:损失函数

  • 对比学习常用的损失函数是对比损失(Contrastive Loss)NCE(Noise Contrastive Estimation)损失,其中最常用的是 InfoNCE 损失。该损失函数通过极大化正样本对的相似性,极小化负样本对的相似性来优化模型。

    InfoNCE 损失函数的公式如下:
    在这里插入图片描述
    在反向传播过程中,L分别对q和k中的权重w微分来进行参数更新,使得权重作用于与q相似性高的k
    后的loss更低

步骤5:优化与更新

  • 利用梯度下降算法最小化对比损失,从而更新网络参数,使模型能够学到更好的特征表示。

3. 监督对比学习

在有标签的情况下,可以利用标签信息来构造更加有效的正负样本对。**监督对比学习(Supervised Contrastive Learning)**通过使用相同类别的样本作为正样本对,不同类别的样本作为负样本对,这种方式可以进一步提升模型的分类性能。具体步骤如下:

  1. 构建正样本对:对于每个样本,选择与其类别相同的其他样本作为正样本,而非只依赖数据增强生成正样本对。
  2. 构建负样本对:选择不同类别的样本作为负样本。

通过引入监督信息,监督对比学习可以更加有效地对齐同类别样本的特征表示,从而提升模型的泛化能力。

这种方式确保了模型能够更好地利用语言模式中的信息,增强对跨领域数据的泛化能力。相当于对正样本对最大化,负样本对最小化来使模型对于同类别的样本有着更好的辨识能力;在一些E2D的模型中,可以保留或冻结编码器部分当作预训练编码器,然后进行下游任务。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/436503.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Another redis desktop manager使用说明

Another redis desktop manager使用说明 概述界面介绍图示说明连接界面设置界面查看操作日志主界面信息进入redis-cli控制台更多 概述 Another Redis Desktop Manager是一个开源的跨平台 Redis 客户端,提供了简洁易用的图形用户界面(GUI)&am…

C++ 数据结构算法细节相关

细节 队列 这段代码实现的是二叉树的层序遍历&#xff0c;也就是按照树的层次&#xff0c;一层一层地遍历节点。下面我会为你详细解释这段代码。 queue <TreeNode*> q; 这是一个队列&#xff0c;队列中存放的是指向TreeNode的指针。队列&#xff08;queue&#xff09;是…

云原生数据库 PolarDB

简介&#xff1a;云原生数据库 PolarDB 是阿里云自研产品&#xff0c;在存储计算分离架构下&#xff0c;利用了软硬件结合的优势&#xff0c;为用户提供秒级弹性、高性能、海量存储、安全可靠的数据库服务。100%兼容MySQL和PostgreSQL生态&#xff0c;支持分布式扩展&#xff0…

Mybatis总结

Mybatis 概述及搭建 原是Apache的一个开源项目iBatis, 2010年6月这个项目由Apache Software Foundation 迁移到了 Google Code&#xff0c;随着开发团队转投GoogleCode 旗下&#xff0c; iBatis3.x正式更名为MyBatis。 MyBatis 是一款优秀的持久层框架。 MyBatis 避免了几乎所有…

系列二、案例实操

一、创建表空间 1.1、概述 在Oracle数据库中&#xff0c;表空间是一个逻辑存储单位&#xff0c;它是Oracle数据库中存储数据的地方。 1.2、超级管理员登录 sqlplus / as sysdba 1.3、创建表空间 create tablespace water_boss datafile C:\Programs\oracle11g\oradata\orcl\…

Spring Cloud Alibaba-(6)Spring Cloud Gateway【网关】

Spring Cloud Alibaba-&#xff08;1&#xff09;搭建项目环境 Spring Cloud Alibaba-&#xff08;2&#xff09;Nacos【服务注册与发现、配置管理】 Spring Cloud Alibaba-&#xff08;3&#xff09;OpenFeign【服务调用】 Spring Cloud Alibaba-&#xff08;4&#xff09;Sen…

华为-IPv6与IPv4网络互通的6to4自动隧道配置实验

IPv4向IPv6的过渡不是一次性的,而是逐步地分层次地。在过渡时期,为了保证IPv4和IPv6能够共存、互通,人们发明了一些IPv4/IPv6的互通技术。 本实验以6to4技术为例,阐述如何配置IPv6过渡技术。 配置参考 R1 # sysname R1 # ipv6# interface GigabitEthernet0/0/1ip address 200…

【C语言指南】数据类型详解(下)——自定义类型

&#x1f493; 博客主页&#xff1a;倔强的石头的CSDN主页 &#x1f4dd;Gitee主页&#xff1a;倔强的石头的gitee主页 ⏩ 文章专栏&#xff1a;《C语言指南》 期待您的关注 目录 引言 1. 结构体&#xff08;Struct&#xff09; 2. 联合体&#xff08;Union&#xff09; 3…

【网络安全 | 渗透工具】自动化 .env/.git文件检测

原创文章,禁止转载。 文章目录 1. 安装 DotGit2. 配置 DotGit3. 使用 DotGit 检测 .env / .git 文件1. 安装 DotGit 在谷歌应用商店中搜索 DotGit 并进行安装: 2. 配置 DotGit 安装完成后,可以在设置中开启或关闭相关功能: 3. 使用 DotGit 检测 .env / .git 文件 接下来…

centos7安装Redis单机版

一、检查是否有GCC环境 gcc --version # 提示-bash: gcc: 未找到命令 说明没有gcc环境# 安装gcc环境 yum install gcc# 如果yum源报错 # 1.检查网络是否正常 ping www.baidu.com # 2.备份当前的yum源 mv /etc/yum.repos.d/CentOS-Base.repo /etc/yum.repos.d/CentOS-Base.repo…

Redis篇(Java操作Redis)

目录 讲解一&#xff1a;简介 讲解二&#xff1a;Jedis Github 一、创建项目、 二、添加依赖 三、配置文件 四、Java连接Redis 五、通过Redis连接池获取连接对象并操作服务器 六、封装JedisUtil对外提供连接对象获取方法 七、Java操作Redis五种数据类型 1. 连接与释放…

避免glibc版本而报错,CentOS等Linux安装node.js完美方法

概述 对于Node.js v18.x或更高&#xff0c;Node.js官方默认是在Ubuntu 20.04, Debian 10, RHEL 8,CentOS 8等高版操作系统上编译得到的&#xff0c;高版本操作系统的glibc版本≥2.28。所以&#xff0c;下载Node.js后&#xff0c;也需要glibc版本≥2.28才能使用。 而CentOS 7.x等…

《安富莱嵌入式周报》第343期:雷电USB4开源示波器正式发布,卓越的模拟前端低噪便携示波器,自带100W电源的便携智能烙铁,NASA航空航天锂电池设计

周报汇总地址&#xff1a;嵌入式周报 - uCOS & uCGUI & emWin & embOS & TouchGFX & ThreadX - 硬汉嵌入式论坛 - Powered by Discuz! 更新一期视频教程 【授人以渔】CMSIS-RTOS V2封装层专题视频&#xff0c;一期视频将常用配置和用法梳理清楚&#xff0…

JMeter对jdbc request以及foreach和loop controller的使用

Jmeter中jdbc request和foreach控制器 1. 使用variable name实现对数据库查询结果的遍历 在foreach controller中&#xff0c;注意要做variable name的关联(correlation), 否则没法取回这里的jdbc request返回的结果。这里的input variable prefix一定要和jdbc request中的var…

【React】react项目中的redux使用

1. store目录结构设计 2. react组件中使用store中的数据——useSelector 3. react组件中修改store中的数据——useDispatch 4. 示例 react-basic\src\store\moduels\counterStore.js import { createSlice } from reduxjs/toolkitconst counterStore createSlice({name: cou…

新书推荐——《深度学习精粹与PyTorch实践》

深度学习绝非不可窥探的黑箱!深入理解其模型和算法的实际运作机制&#xff0c;是驾驭并优化结果的关键。你无需成为数学专家或资深数据科学家,同样能够掌握深度学习系统内部的工作原理。 本书旨在通过深入浅出的方式&#xff0c;为你揭示这些原理&#xff0c;让你在理解和解释…

视频理解新篇章:Mamba模型的探索与应用

人工智能咨询培训老师叶梓 转载标明出处 在计算机视觉领域&#xff0c;视频理解一直是一个核心研究方向&#xff0c;它要求算法能够捕捉视频中的时空动态以定位活动或推断其演变。随着深度学习技术的发展&#xff0c;研究者们探索了多种架构&#xff0c;如递归神经网络(RNN)、…

2024新淘宝镜像地址下载【vue-cli】

需要先安装NodeJS&#xff0c;然后再安装Vue-cli NodeJS下载 nodejs下载&#xff0c;直接搜官网 网址&#xff1a;https://nodejs.org/zh-cn LTS为长期稳定版本&#xff1a; 安装过程 只需要配置一下安装目录&#xff0c;其他都点下一步next 注意安装目录无中文无空格 验证…

【吊打面试官系列-MySQL面试题】为表中得字段选择合适得数据类型

大家好&#xff0c;我是锋哥。今天分享关于【为表中得字段选择合适得数据类型】面试题&#xff0c;希望对大家有帮助&#xff1b; 为表中得字段选择合适得数据类型 字段类型优先级: 整形>date,time>enum,char>varchar>blob,text 优先考虑数字类型&#xff0c;其次是…

微服务sentinel解析部署使用全流程

sentinel源码地址&#xff1a; 介绍 alibaba/Sentinel Wiki GitHub sentinel官方文档&#xff1a; https://sentinelguard.io/zh-cn/docs/introduction.html Sprong Cloud alibaba Sentinel文档【小例子】 : Sentinel alibaba/spring-cloud-alibaba Wiki GitHub 目录 1、…