苹果荔枝柠檬梨柿子数据集 水果数据集 树上1500张 带标注 voc yolo 5类

 

苹果荔枝柠檬梨柿子数据集 水果数据集 树上1500张 带标注 voc yolo 5类

苹果荔枝柠檬梨柿子数据集

名称

苹果荔枝柠檬梨柿子数据集 (Apple, Litchi, Lemon, Pear, Persimmon Dataset)

规模

  • 图像数量:1498张图像。
  • 类别:5种水果类别。
  • 标注个数:5376个标注。
数据划分

  • 训练集 (Train):通常占总数据的80%左右,约1198张图像。
  • 验证集 (Validation):通常占总数据的20%左右,约300张图像。
类别和数量
  • apple:299张图像,1570个标注。
  • custardapple:297张图像,632个标注。
  • lemon:300张图像,1093个标注。
  • pear:300张图像,751个标注。
  • persimmon:298张图像,1330个标注。
数据特点
  • 高质量与高分辨率:所有图像均为高分辨率,适合进行精细的果实检测。
  • 多样性和复杂性:图像覆盖了不同品种和成熟度的果实,增加了模型的泛化能力。
  • 详尽标注:每个图像都附有准确的边界框标注信息,确保了训练数据的质量。
应用领域
  • 果树种植:帮助果园管理者了解果实生长状态,及时采摘。
  • 果实品质控制:通过检测果实的数量和成熟度,提高果实品质。
  • 智能农业:结合无人机和机器人技术,实现自动化果实采集。
1. 安装依赖库

首先,确保安装了必要的依赖库。可以在项目目录中的requirements.txt文件中列出这些依赖库,然后运行以下命令进行安装:

 
pip install -r requirements.txt

requirements.txt 文件内容示例:

 

深色版本

torch==1.10.0
torchvision==0.11.1
pandas==1.3.4
cv2
albumentations==1.1.0
2. 创建数据集

定义一个自定义的数据集类,并创建数据加载器。

 
import os
import pandas as pd
import cv2
from torch.utils.data import Dataset, DataLoader
from torchvision.transforms import Compose, ToTensor, Normalize, Resize
from albumentations import HorizontalFlip, RandomBrightnessContrast, ShiftScaleRotate, BboxFromMasks, BBoxFormatPASCAL
from albumentations.pytorch import ToTensorV2# 自定义数据集类
class FruitDataset(Dataset):def __init__(self, data_root, annotations_file, transforms=None):self.data_root = data_rootself.annotations = pd.read_csv(annotations_file)self.transforms = transformsdef __len__(self):return len(self.annotations)def __getitem__(self, idx):img_path = os.path.join(self.data_root, self.annotations.iloc[idx, 0])image = cv2.imread(img_path)bboxes = self.annotations.iloc[idx, 1:].values.reshape(-1, 4)  # bounding box coordinateslabels = self.annotations.columns[1:]if self.transforms:augmented = self.transforms(image=image, bboxes=bboxes)image = augmented['image']bboxes = augmented['bboxes']return image, bboxes, labels# 图像预处理
def get_transforms():"""构建预处理函数"""_transform = [Resize(height=416, width=416, interpolation=cv2.INTER_LINEAR),HorizontalFlip(p=0.5),RandomBrightnessContrast(p=0.2),ShiftScaleRotate(p=0.5, shift_limit=0.0625, scale_limit=0.2, rotate_limit=15),Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),ToTensorV2(),BboxFromMasks(format=BBoxFormatPASCAL)]return Compose(_transform)# 创建数据加载器
train_dataset = FruitDataset(data_root='path_to_your_data_directory',annotations_file='path_to_your_annotations.csv',transforms=get_transforms()
)
val_dataset = FruitDataset(data_root='path_to_your_data_directory',annotations_file='path_to_your_annotations.csv',transforms=get_transforms()
)train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True, num_workers=4)
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False, num_workers=4)
3. 训练YOLOv5模型

使用YOLOv5进行训练。

 

python

深色版本

!git clone https://github.com/ultralytics/yolov5  # 下载YOLOv5代码仓库
cd yolov5# 使用YOLOv5训练模型
python train.py --weights yolov5s.pt --data path_to_your_data.yaml --name fruit_detection --img 416 --batch 16 --epochs 100 --device 0
  • 数据配置文件:创建一个名为data.yaml的数据配置文件,其中包含训练和验证数据集的信息。
 

yaml

深色版本

train: path_to_your_train_images
val: path_to_your_val_images
nc: 5  # 类别数量
names: [apple, custardapple, lemon, pear, persimmon]
4. 调整模型
  • 超参数调整:根据实际情况调整模型的超参数,例如学习率、批大小等。
  • 数据增强:增加数据增强策略,如旋转、缩放、亮度对比度调整等,以提高模型的泛化能力。
5. 部署应用
  • 模型优化:对模型进行微调,使其适应特定应用场景。
  • 实时检测:将训练好的模型部署到实际环境中,实现实时果实检测功能。

总结

苹果荔枝柠檬梨柿子数据集为果实检测提供了一个丰富的资源,适用于智能农业和果实品质控制等领域。通过YOLOv5模型的训练和优化,我们可以得到一个高效且准确的果实检测系统,从而更好地服务于现代果园管理。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/436880.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

成都网安周暨CCS2024 | 大模型安全与产业应用创新研讨活动成功举办

9月11日-12日,作为2024年国家网络安全宣传周成都系列活动的重磅活动之一,CCS 2024成都网络安全系列活动在成都举行。“大模型安全与产业应用创新研讨活动”同期举办,本场活动由百度安全、成都无糖信息联合承办,特邀云安全联盟CSA大…

数据权限的设计与实现系列11——前端筛选器组件Everright-filter集成功能完善2

‍ 筛选条件数据类型完善 文本类 筛选器组件给了一个文本类操作的范例,如下: Text: [{label: 等于,en_label: Equal,style: noop},{label: 等于其中之一,en_label: Equal to one of,value: one_of,style: tags},{label: 不等于,en_label: Not equal,v…

Gin框架简易搭建(3)--Grom与数据库

写在前面 项目地址 个人认为GORM 指南这个网站是相比较之下最为清晰的框架介绍 但是它在环境搭建阶段对于初学者而言不是很友好,尤其是使用mysql指令稍有不同,以及更新的方法和依赖问题都是很让人头疼的,而且这些报错并非逻辑上的&#xf…

【Redis】如何在 Ubuntu 上安装 Redis 5

🥰🥰🥰来都来了,不妨点个关注叭! 👉博客主页:欢迎各位大佬!👈 本期内容主要介绍如何在 Ubuntu 上安装 Redis5 一些碎碎念: 本来这期内容介绍如何在 Centos 安装 Redis …

TypeScript 设计模式之【状态模式】

文章目录 状态模式:优雅切换的交通信号灯状态模式的奥秘状态模式有什么利与弊?如何使用状态模式来优化你的系统代码实现案例状态模式的主要优点状态模式的主要缺点状态模式的适用场景总结 状态模式:优雅切换的交通信号灯 当你站在繁忙的十字路口&#…

Android AMS介绍

注:本文为作者学习笔记,如有误,请各位大佬指点 系统进程运行环境的初始化 Context是一个抽象类,它可以访问application环境的全局信息和各种资源信息和类 context功能: 对Activity、Service生命周期的管理通过Intent发…

Rust 语言开发 ESP32C3 并在 Wokwi 电子模拟器上运行(esp-hal 非标准库、LCD1602、I2C)

文章目录 esp-rs 简介GithubRust 包仓库Rust 教程Wokwi 电子模拟器开发环境Rust 环境esp-rs 环境创建 ESP32C3 项目项目结构编译项目命令运行模拟器ESP32C3 烧录 esp-rs 简介 esp-rs 是一个专注于为 Espressif 系列芯片(如 ESP32、ESP32-S2、ESP32-C3 等&#xff0…

可视化图表与源代码显示配置项及页面的动态调整功能分析

可视化图表与源代码显示配置项及页面的动态调整功能分析 文章目录 可视化图表与源代码显示配置项及页面的动态调整功能分析1.分析图表源代码2.分析源代码显示功能**完整代码参考:** 3.分析源代码显示及动态调整**完整代码参考:** 4.分析代码编辑器及运行…

中国电信解锁万亿参数大模型:TeleAI的创新与突破

首个由万卡集群训练出来的万亿参数大模型,已被一家央企解锁。 具体而言,为了推动纯国产人工智能的探索,带来这条新路径的正是中国电信人工智能研究院(TeleAI)。 该研究院由中国电信集团的CTO、首席科学家兼院长李学龙…

CSS中字体图标的使用

引言: 在网页设计当中,会有很多很简洁的图标,比如箭头,照相机,放大镜等 这些大概率都是使用字体图标来完成的,因为字体图标比较简洁高效,不会像图片一样需要向浏览器请求数据。那么字体图标该…

使用powershell的脚本报错:因为在此系统中禁止执行脚本

1.添加powershell功能环境: 2.启动powershell的执行策略 因为在此系统中禁止执行脚本。 set-executionpolicy unrestricted

Redis: 主从复制读写分离环境搭建

概述 Redis 的单机模式实际上就是在一个服务器上装了一个单节点的Redis通过简单的配置和简单的命令启动起来就可以使用这种搭建环境,不保证高可用的情况下,完全没有问题如果说你的项目必须要具备高可用,而且 Redis 也要提供更高的性能这个单…

【hot100-java】【寻找重复数】

技巧 使用字典,边记录边比较,有直接输出。 def findDuplicate(nums):seen {}for num in nums:if num in seen:return numseen[num] Truereturn None 可惜不是O(1) 二分查找 class Solution {public int findDuplicate(int[] nums) {int left0;int ri…

宝塔搭建nextcould 30docker搭建onlyoffic8.0

宝塔搭建nextcould 宝塔搭建nextcould可以参考这两个博文 我搭建的是30版本的nextcould,服务组件用的是下面这些,步骤是一样的,只是版本不一样而已 nginx 1.24.0 建议选择nginx,apache没成功。 MySQL 8.0以上都可以 php 8.2.…

Certbot自动申请并续期https证书

Certbot自动申请并续期https证书 一、 安装 Certbot:使用命令安装 Certbot: dnf install certbot python3-certbot-nginx获取 SSL 证书:运行 Certbot 命令来获取并安装 SSL 证书。 示例命令,替换其中的域名和路径信息&#xff1a…

jmeter-请求参数加密-MD5加密

方法1 :使用jmeter自带的函数助手digest Tool(工具)---Function Helper Dialog(函数助手对话框) 第一个参数是要md5加密的值,第二个参数是保存加密后值的变量 ( 此处变量是从txt文件导入的,所以使用的是${wd} ) …

Linux网络操作命令与函数全面总结

1. 引言 Linux作为服务器和开发平台,网络操作是其核心功能之一。本文旨在全面总结Linux系统中的网络操作方法,包括命令行工具和编程接口,帮助读者深入理解Linux网络管理的机制。 2. 命令行工具 2.1 ping 命令 ping 命令用于测试网络连接和…

基于投影滤波算法的rick合成地震波滤波matlab仿真

目录 1.课题概述 2.系统仿真结果 3.核心程序与模型 4.系统原理简介 4.1 RICK合成地震波模型 4.2 投影滤波算法原理 5.完整工程文件 1.课题概述 基于投影滤波算法的rick合成地震波滤波matlab仿真。分别通过标准的滤波投影滤波以及卷积滤波投影滤波对合成地震剖面进行滤波…

基于Hive和Hadoop的共享单车分析系统

本项目是一个基于大数据技术的共享单车分析系统,旨在为用户提供全面的单车使用信息和深入的出行行为分析。系统采用 Hadoop 平台进行大规模数据存储和处理,利用 MapReduce 进行数据分析和处理,通过 Sqoop 实现数据的导入导出,以 S…

论文阅读 | HiDDeN网络架构

ECCV 2018 斯坦福-李飞飞团队 一、问题描述 受以下启发: 对抗性例子的发现:深度学习模型在图像识别任务中对微小的、难以察觉的输入扰动非常敏感,这些扰动可以导致模型错误分类图像。这一现象表明,神经网络可以在图像中编码信息&…