自动驾驶-轨迹拼接

在进行自动驾驶的规划之前,要确定当前帧轨迹规划的起点,这个起点常被误认为是当前车辆的位置,即每次以车辆的当前位置进行轨迹规划;其实不是这样的,直观上,这会导致本次次规划的轨迹同上次规划的轨迹之间是不连续的,这个不连续传递到控制模块,由于轨迹规划出的轨迹对于控制而言就是参考线,那么由于参考线是不连续的,对控制器而言就是朝令夕改。

轨迹重规划

上述所讲的直接以当前位置进行规划起点,进行本次轨迹规划的方法,其实称为轨迹重规划,即当前位置与上一帧的参考轨迹差距过大,需要重新规划轨迹;对于这种情况,apollo也做了一定优化,根据自车当前实际位置状态信息,通过车辆运动学推导0.1s后的位置状态信息,作为规划起始点状态,向后推导0.1s,这主要是为了减少执行机构的响应延迟问题,将未来的状态作为执行器的参考输入。

参考链接:apollo轨迹拼接

轨迹拼接

轨迹拼接的核心思想是将当前的规划起点,设置在上次(上一帧)规划出轨迹上,从而保证轨迹的连续性,提升控制效果。
上述思想的实现,需要得到当前自车状态,在上一帧轨迹中的匹配点,匹配点的确定有两种方式:

  1. 相对时间匹配
    根据当前时间戳和上一帧轨迹起点的时间戳对比,计算当前时间自车在上一帧轨迹中的时间匹配点(下图中的绿色点)及该匹配点在上一帧轨迹中对应的索引值t_index。
  2. 相对里程匹配
    结合自车的定位信息与上一帧轨迹信息,将自车信息从笛卡尔坐标系→Frenet坐标(s,d),得到当前的位置s,根据当前的s在上一帧的轨迹中,即可查询到在里程维度上的匹配点(下图中的蓝色点)。
    轨迹拼接根据index,选取min{时间匹配点,里程匹配点}作为当前车辆在上一帧映射的匹配点。如上图所示,由于绿色点索引更小,故即选择绿色点为匹配点。

在选择完规划起点后,为缓解执行机构的延时,同样向前预测del_t时间,以del_t时刻的点,作为起点,进行当前时刻的轨迹规划,并在上一帧帧的轨迹上截取出matched_index往前n个点开始,至forward_rel_time的一段轨迹,作为stitching_trajectory。
在这里插入图片描述现在的疑问是为何要生成一个stitch trajectory呢?即使不选择,也是和直接的轨迹是平滑与连续的啊?
但是规划起点的选择是明晰的。
参考链接:轨迹拼接

轨迹拼接apollo代码

/* Planning from current vehicle state if:
1. the auto-driving mode is off
(or) 2. we don't have the trajectory from last planning cycle
(or) 3. the position deviation from actual and target is too high
*/
std::vector<TrajectoryPoint> TrajectoryStitcher::ComputeStitchingTrajectory(
const VehicleState& vehicle_state, const double current_timestamp,
const double planning_cycle_time, const size_t preserved_points_num,
const bool replan_by_offset, const PublishableTrajectory* prev_trajectory,
std::string* replan_reason) {//a.是否使能轨迹拼接if (!FLAGS_enable_trajectory_stitcher) {*replan_reason = "stitch is disabled by gflag.";return ComputeReinitStitchingTrajectory(planning_cycle_time, vehicle_state);}//b.上一帧是否生成轨迹if (!prev_trajectory) {*replan_reason = "replan for no previous trajectory.";return ComputeReinitStitchingTrajectory(planning_cycle_time, vehicle_state);}//c.是否处于自动驾驶模式if (vehicle_state.driving_mode() != canbus::Chassis::COMPLETE_AUTO_DRIVE) {*replan_reason = "replan for manual mode.";return ComputeReinitStitchingTrajectory(planning_cycle_time, vehicle_state);}//d.上一帧是否存在轨迹点 size_t prev_trajectory_size = prev_trajectory->NumOfPoints();if (prev_trajectory_size == 0) {*replan_reason = "replan for empty previous trajectory.";return ComputeReinitStitchingTrajectory(planning_cycle_time, vehicle_state);}const double veh_rel_time = current_timestamp - prev_trajectory->header_time();size_t time_matched_index = prev_trajectory->QueryLowerBoundPoint(veh_rel_time);//e.判断当前时间相对于上一帧的相对时间戳是否小于上一帧起点相对时间戳if (time_matched_index == 0 &&veh_rel_time < prev_trajectory->StartPoint().relative_time()) {*replan_reason ="replan for current time smaller than the previous trajectory's first ""time.";return ComputeReinitStitchingTrajectory(planning_cycle_time, vehicle_state);}//f.判断时间匹配点是否超出上一帧轨迹点范围if (time_matched_index + 1 >= prev_trajectory_size) {*replan_reason ="replan for current time beyond the previous trajectory's last time";return ComputeReinitStitchingTrajectory(planning_cycle_time, vehicle_state);}auto time_matched_point = prev_trajectory->TrajectoryPointAt(static_cast<uint32_t>(time_matched_index));//g.判断时间匹配点处是否存在path_pointif (!time_matched_point.has_path_point()) {*replan_reason = "replan for previous trajectory missed path point";return ComputeReinitStitchingTrajectory(planning_cycle_time, vehicle_state);}size_t position_matched_index = prev_trajectory->QueryNearestPointWithBuffer({vehicle_state.x(), vehicle_state.y()}, 1.0e-6);//计算实际位置点和匹配点的横纵向偏差auto frenet_sd = ComputePositionProjection(vehicle_state.x(), vehicle_state.y(),prev_trajectory->TrajectoryPointAt(static_cast<uint32_t>(position_matched_index)));//h.判断横纵向偏差if (replan_by_offset) {auto lon_diff = time_matched_point.path_point().s() - frenet_sd.first;auto lat_diff = frenet_sd.second;//h.1:横向偏差不满足条件if (std::fabs(lat_diff) > FLAGS_replan_lateral_distance_threshold) {const std::string msg = absl::StrCat("the distance between matched point and actual position is too ""large. Replan is triggered. lat_diff = ",lat_diff);*replan_reason = msg;return ComputeReinitStitchingTrajectory(planning_cycle_time,vehicle_state);}//h.2:纵向偏差不满足条件if (std::fabs(lon_diff) > FLAGS_replan_longitudinal_distance_threshold) {const std::string msg = absl::StrCat("the distance between matched point and actual position is too ""large. Replan is triggered. lon_diff = ",lon_diff);*replan_reason = msg;return ComputeReinitStitchingTrajectory(planning_cycle_time,vehicle_state);}} else {ADEBUG << "replan according to certain amount of lat and lon offset is ""disabled";}//计算当前时刻后T时刻的时间,并计算其在上一帧轨迹中对应的索引值double forward_rel_time = veh_rel_time + planning_cycle_time;size_t forward_time_index =prev_trajectory->QueryLowerBoundPoint(forward_rel_time);ADEBUG << "Position matched index:\t" << position_matched_index;ADEBUG << "Time matched index:\t" << time_matched_index;//选择时间匹配索引和位置匹配索引中的较小索引作为匹配点索引auto matched_index = std::min(time_matched_index, position_matched_index);//构建拼接轨迹,<匹配索引点前n个点,当前时刻后的T时刻所对应的匹配点>std::vector<TrajectoryPoint> stitching_trajectory(prev_trajectory->begin() +std::max(0, static_cast<int>(matched_index - preserved_points_num)),prev_trajectory->begin() + forward_time_index + 1);const double zero_s = stitching_trajectory.back().path_point().s();for (auto& tp : stitching_trajectory) {if (!tp.has_path_point()) {*replan_reason = "replan for previous trajectory missed path point";return ComputeReinitStitchingTrajectory(planning_cycle_time,vehicle_state);}//适配时间和s值tp.set_relative_time(tp.relative_time() + prev_trajectory->header_time() -current_timestamp);tp.mutable_path_point()->set_s(tp.path_point().s() - zero_s);}return stitching_trajectory;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/438383.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

IDEA 使用技巧与插件推荐

目录 前言1. IDEA 使用技巧1.1 快捷键优化与应用1.2 高效调试与日志分析1.3 代码模板与片段的自定义 2. 插件推荐2.1 MyBatisX2.2 Lombok2.3 CheckStyle-IDEA2.4 Key Promoter X2.5 GitToolBox2.6 Rainbow Brackets 3. IDEA 性能优化3.1 内存与堆栈设置3.2 禁用不必要的插件3.3…

设计模式——责任链模式

哈喽&#xff0c;各位盆友们&#xff01;我是你们亲爱的学徒小z&#xff0c;今天给大家分享的文章是设计模式的——责任链模式。 文章目录 定义通用类图1.具体代码2.责任链模式的组成&#xff1a;3.责任链模式的优点&#xff1a;4.责任链模式的缺点&#xff1a; 实际应用&#…

向日葵软件安装失败

一开始点击普通下载&#xff0c;下载完毕后&#xff0c;安装了好几次也没安装成功。 查找解决方法后 在控制面板-程序和功能&#xff0c;寻找已安装 的向日葵 手动卸载已安装但是又没成功的向日葵 重新点击普通下载&#xff0c;下载完安装还是失败。 于是改为安全下载&…

夜间道路目标检测数据集 5000张 夜间道路 带标voc yolo

夜间道路目标检测数据集 5000张 夜间道路 带标voc yolo 夜间道路目标检测数据集 5000张 夜间道路 带标voc yolo label | pic_ num | box_ num car: (4907, 43417) pedestrian: (1039, 3520) traffic light: (3276, 15271) traffic sign: (4072, 15821) bicycle: (155, 233) bus…

开发人员智能助手

据说AI可以代替开发人员&#xff0c;目前看暂时不用担心&#xff0c;不仅不担心&#xff0c;还要主动使用它。 过去有了问题需要自己各网站搜索&#xff0c;真真假假的东西太多&#xff0c;很难找到正确答案&#xff0c;现在可以问智能体了&#xff1a; 1、JAVA开发大师 htt…

ElasticSearch备考 -- 多字段查询

一、题目 索引task有3个字段a、b、c&#xff0c;写一个查询去匹配这三个字段为mom&#xff0c;其中b的字段评分比a、c字段大一倍&#xff0c;将他们的分数相加作为最后的总分数 二、思考 通过题目要求对多个字段进行匹配查询&#xff0c;可以考虑multi match、bool query操作。…

【C++】——list的介绍和模拟实现

P. S.&#xff1a;以下代码均在VS2019环境下测试&#xff0c;不代表所有编译器均可通过。 P. S.&#xff1a;测试代码均未展示头文件stdio.h的声明&#xff0c;使用时请自行添加。 博主主页&#xff1a;Yan. yan.                        …

1.9 物理层设备

欢迎大家订阅【计算机网络】学习专栏&#xff0c;开启你的计算机网络学习之旅&#xff01; 文章目录 前言1 中继器1.1 基本定义1. 2 工作原理 2 集线器2.1 基本定义2.2 工作原理2.3 冲突域 3 中继器与集线器的比较 前言 计算机网络的物理层是OSI模型中的第一层&#xff0c;主要…

【机器学习】任务六:分类算法(支持向量机(SVM)在线性可分与不可分数据中的应用与可视化分析)

目录 1.知识简介 2.SVM 支持向量机模型训练与可视化报告 2.1 导入本项目所需的模块和包 &#xff08;1&#xff09;目的 &#xff08;2&#xff09;代码实现 &#xff08;3&#xff09;代码解释 2.2 随机生成线性可分的数据并可视化 &#xff08;1&#xff09;目的 &a…

Label-Studio ML利用yolov8模型实现自动标注

引言 Label Studio ML 后端是一个 SDK&#xff0c;用于包装您的机器学习代码并将其转换为 Web 服务器。Web 服务器可以连接到正在运行的 Label Studio 实例&#xff0c;以自动执行标记任务。我们提供了一个示例模型库&#xff0c;您可以在自己的工作流程中使用这些模型&#x…

YOLOv11改进 | Conv篇 | YOLOv11引入SAConv模块

1. SAConv介绍 1.1 摘要: 许多现代物体检测器通过使用三思而后行的机制表现出出色的性能。 在本文中,我们在目标检测的主干设计中探索了这种机制。 在宏观层面,我们提出了递归特征金字塔,它将特征金字塔网络的额外反馈连接合并到自下而上的骨干层中。 在微观层面,我们提出…

Blazor流程编排的艺术:深入Z.Blazor.Diagrams库的使用与实践

为现代网页应用开发提供动力的其中一个重要方面就是前端框架的强大功能与灵活性。而在.NET生态中&#xff0c;Blazor以其独特的工作方式和优势逐渐获得了开发者们的青睐。今天&#xff0c;在这篇文章中&#xff0c;我将带你深入探索一个基于Blazor的优秀库——Z.Blazor.Diagram…

TiDB 7.x 源码编译之 TiFlash 篇

本文首发于TiDB社区专栏&#xff1a;https://tidb.net/blog/5f3fe44d 导言 TiFlash 从去年四月一日开源至今已经过去将近一年半&#xff0c;这段时间里 TiFlash 从 v6.0.0-DMR 升级到了 v7.3.0-DMR&#xff0c;并增加了若干新特性&#xff0c;比如支持 MPP 实现窗口函数框架&am…

nginx+php+postgresql搭建漏洞靶场

经过我多番查找,最终得出一个结论,dvwa暂时不支持 postgresql 本文给大家提供一个思路,千万不要轻易模仿 更新系统包列表 首先,打开终端并更新你的系统包列表: sudo apt updatesudo apt upgrade -y安装必要的软件包 安装Nginx、PHP、PostgreSQL以及一些必要的PHP扩展:…

使用html写一个能发起请求的登录界面

目录 head部分 内联样式部分 body部分 login-form类的div myModal类的div id script部分 总的代码 界面与操作演示 <!DOCTYPE html> <html lang"en"> <!DOCTYPE html> 这是文档类型声明&#xff0c;告诉浏览器这是一个 HTML文档。 <…

Spring Boot 中的拦截器 Interceptors

​ 博客主页: 南来_北往 系列专栏&#xff1a;Spring Boot实战 前言 Spring Boot中的拦截器&#xff08;Interceptor&#xff09;是一种用于拦截和处理HTTP请求的机制&#xff0c;它基于Spring MVC框架中的HandlerInterceptor接口实现。拦截器允许在请求到达控制器&#…

ACL(Access Control List)访问控制列表

目录 ACL 访问控制列表 ACL分类 ACL的组成 ACL匹配机制 ACL调用方式 实验配置 不允许PC1访问PC4 只允许PC1访问PC4 高级ACL 基本概念 实验配置 限制ping 实验配置 限制DNS 基于时间的ACL 实验配置 ACL 访问控制列表 根据一系列不同的规则&#xff0c;设备根据这…

基础篇:667的大题题型与应对策略

通过本节&#xff0c;你将学习到&#xff1a; 667分析题的考查方向与基本题型667分析题的两种解决策略 667分析题的三大基本题型 首先&#xff0c;通过回顾667科目分析题的真题&#xff08;2021-2024年&#xff09;&#xff0c;我根据题目特点将其归纳为三个主要类别。这样的…

Python:import语句的使用(详细解析)(一)

相关阅读 Pythonhttps://blog.csdn.net/weixin_45791458/category_12403403.html?spm1001.2014.3001.5482 import语句是Python中一个很重要的机制&#xff0c;允许在一个文件中访问另一个文件的函数、类、变量等&#xff0c;本文就将进行详细介绍。 在具体谈论import语句前&a…

使用ESPnet的 setup_anaconda.sh安装脚本一步到位,配置conda虚拟环境

使用ESPnet的 setup_anaconda.sh 安装脚本一步到位&#xff0c;配置conda虚拟环境 前言 ESPnet&#xff08;End-to-End Speech Processing Toolkit&#xff09;是一款用于语音识别、语音合成等任务的开源端到端语音处理工具包。为了在不同系统上快速配置ESPnet开发环境&#…