FPGA-UART串口接收模块的理解

UART串口接收模块

背景

        在之前就有写过关于串口模块的文章——《串口RS232的学习》。工作后很多项目都会用到串口模块,又来重新理解一下FPGA串口接收的代码思路。

        关于串口相关的参数,以及在文章《串口RS232的学习》中已有详细的描述,这里就不过多的赘述了。

uart_rx模块理解

        一般来说,用FPGA实现串口数据的接收,其模块的输入和输出大多都会写成以下形式。

        在该模块的输入端,时钟和复位信号不必多说;FPGA模块的Rx信号则是通过串口线与上位机的Tx端相连接进行数据的传输。

        而在该模块的输出端,Rx_ready信号代表一帧数据(起始位+数据+校验位+停止位,校验位不一定有)的接收完成,当上位机传输了一帧数据之后,Rx_ready信号会被拉高一个时钟周期,代表接收到了一帧数据;而Rx_data一般代表一帧数据中的8位数据,当Rx_ready信号被拉高时,Rx_data=上位机发送过来的8位数据。

uart_rx接收数据后的处理 

        假设上位机向我们的FPGA板卡发送9 Byte的数据,这9 Byte的数据分别为8'H11、8'H22、8'H33、8'H44、8'H55、8'H66、8'H77、8'H88、8'H99。我们应该如何接收呢?

        在不考虑超时处理和校验处理的情况下,可以用以下代码来接收上位机向FPGA板卡发送的数据。


parameter MAX_RX_DATA_NUM = 10;//接收最大的字节个数,假设为10reg [1:0]	r_rx_ready;			//缓存数据便于采集沿
reg [15:0] 	rx_data_length;		//接收数据的长度
reg [MAX_RX_DATA_NUM*8-1:0] rx_data_sum; //每个字节为10Bit,10字节所占的Bit为10*8//当r_rx_ready=2'b01时,代表一帧数据的接收完成。
always(posedge clk or negedge rst_n)beginif(!rst_n)r_rx_ready <= 2'b00;elser_rx_ready <= {r_rx_ready[0],rx_ready}
end//当r_rx_ready=2'b01时,代表接收到了一个字节的数据,接收数据的长度+1;
//由于接收9字节的数据,则rx_data_length的最大值为8
always(posedge clk or negedge rst_n)beginif(!rst_n)rx_data_length <= 16’b0;else if(r_rx_ready==2'b01)rx_data_length <= rx_data_length + 1'b1;elserx_data_length <= rx_data_length;
end//将从上位机接收到的9字节数据,先发送的数据存入高位,按序依次放入rx_data_sum中
//此时,rx_data_sum[79:72]=8'H11;rx_data_sum[71:64]=8'H22;.....rx_data_sum[15:8]=8'H99;rx_data_sum[7:0]=8'H00;
always(posedge clk or negedge rst_n)beginif(!rst_n)rx_data_sum <= 'd0;else if(r_rx_ready==2'b01)rx_data_sum[((MAX_RX_DATA_NUM-rx_data_length)*8-1)-:8] <= rx_data;elserx_data_sum <= rx_data_sum;
end

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/438585.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

单调队列与单调栈<2>——单调栈

单调栈的定义 单调递增栈 栈中元素从栈底到栈顶是递增的。 单调递减栈 栈中元素从栈底到栈顶是递减的。 单调栈的核心内容 我们从左到右遍历元素&#xff0c;构造单调栈&#xff08;从栈顶到栈底递增或减&#xff09;&#xff1a;在 i 从左往右遍历的过程中&#xff0c;我…

手写堆排序

手写堆排序 摘要&#xff1a;本文记录使用go语言实现堆排序 堆的构建 堆性质&#xff1a; 对于每个小堆&#xff0c;父节点与两个子节点比较&#xff0c;父节点比左子节点大&#xff0c;也比右子节点大。 有五个数&#xff1a; 1,2,3,4,5 分别进行入栈。过程如下 (1) 堆为…

(作业)第三期书生·浦语大模型实战营(十一卷王场)--书生入门岛通关第3关Git 基础知识

任务编号 任务名称 任务描述 1 破冰活动 提交一份自我介绍。 2 实践项目 创建并提交一个项目。 破冰活动 提交一份自我介绍。 每位参与者提交一份自我介绍。 提交地址&#xff1a;https://github.com/InternLM/Tutorial 的 camp3 分支&#xff5e; 安装并设置git 克隆仓库并…

[深度学习][python]yolov11+deepsort+pyqt5实现目标追踪

【算法介绍】 YOLOv11、DeepSORT和PyQt5的组合为实现高效目标追踪提供了一个强大的解决方案。 YOLOv11是YOLO系列的最新版本&#xff0c;它在保持高检测速度的同时&#xff0c;通过改进网络结构、优化损失函数等方式&#xff0c;提高了检测精度&#xff0c;能够同时处理多个尺…

CSS选择器的全面解析与实战应用

CSS选择器的全面解析与实战应用 一、基本选择器1.1 通配符选择器&#xff08;*&#xff09;2.标签选择器&#xff08;div&#xff09;1.3 类名选择器&#xff08;.class&#xff09;4. id选择器&#xff08;#id&#xff09; 二、 属性选择器&#xff08;attr&#xff09;三、伪…

欧几里得算法--(密码学基础)

根基&#xff1a;gcd(a,b)gcd(b,a mod b) 先举个例子吧&#xff0c;gcd(16,6)gcd(6,4)gcd(4,2)gcd(2,0)2 学习这个定理的时候我想了几个问题. 第一个问题&#xff1a;为什么求出的就一定是他们两个数的公约数&#xff1f; 这个问题很简单我们只需要通过几何来计较即可&#x…

Electron 使⽤ electron-builder 打包应用

electron有几种打包方式&#xff0c;我使用的是electron-builder。虽然下载依赖的时候让我暴躁&#xff0c;使用起来也很繁琐&#xff0c;但是它能进行很多自定义&#xff0c;打包完成后的体积也要小一些。 安装electron-builder&#xff1a; npm install electron-builder -…

python基础语法2

文章目录 1.顺序语句2.条件语句2.1 语法格式 3.缩进与代码块4.空语句 pass5.循环语句5.1 while循环5.2 for循环 5.3 continue与break 1.顺序语句 默认情况下&#xff0c;python的代码都是按照从上到下的顺序依次执行的。 print(hello ) print(world)结果一定是hello world。写…

【AIGC】ChatGPT提示词解析:如何打造个人IP、CSDN爆款技术文案与高效教案设计

博客主页&#xff1a; [小ᶻZ࿆] 本文专栏: AIGC | ChatGPT 文章目录 &#x1f4af;前言&#x1f4af;打造个人IP爆款文案提示词使用方法 &#x1f4af;CSDN爆款技术文案提示词使用方法 &#x1f4af;高效教案设计提示词使用方法 &#x1f4af;小结 &#x1f4af;前言 在这…

zookeeper 服务搭建(集群)

准备3台虚拟机&#xff0c;ip分别是&#xff1a; 192.168.10.75 192.168.10.76 192.168.10.77 准备3个节点 mkdir /usr/local/cluster cd /usr/local/cluster git clone https://gitee.com/starplatinum111/apache-zookeeper-3.5.9-bin.git 重命名文件夹 mv apache-zookeeper…

【学习笔记】手写一个简单的 Spring IOC

目录 一、什么是 Spring IOC&#xff1f; 二、IOC 的作用 1. IOC 怎么知道要创建哪些对象呢&#xff1f; 2. 创建出来的对象放在哪儿&#xff1f; 3. 创建出来的对象如果有属性&#xff0c;如何给属性赋值&#xff1f; 三、实现步骤 1. 创建自定义注解 2. 创建 IOC 容器…

软件设计师——计算机网络

&#x1f4d4;个人主页&#x1f4da;&#xff1a;秋邱-CSDN博客☀️专属专栏✨&#xff1a;软考——软件设计师&#x1f3c5;往期回顾&#x1f3c6;&#xff1a;软件设计师——操作系统&#x1f31f;其他专栏&#x1f31f;&#xff1a;C语言_秋邱 一、OSI/ RM七层模型(⭐⭐⭐)…

Windows安装Vim,并在PowerShell中直接使用vim

大家好啊&#xff0c;我是豆小匠。 这期介绍下怎么在windows的PowerShell上使用vim&#xff0c;方便在命令行里修改配置文件等。 先上效果图&#xff1a; 1、下载Vim GitHub传送门&#xff1a;https://github.com/vim/vim-win32-installer/releases 选择win-64的版本下载即可&…

HIKVISION 海康威视对讲服务配置平台弱口令

漏洞描述 杭州海康威视系统技术有限公司对讲服务配置平台存在弱口令 漏洞复现 FOFA "document.write(TITLE_SYSTEM);" POC admin #账号 12345 #密码 登录成功

.net Framework 4.6 WebAPI 使用Hangfire

C# 使用 Hangfire 第一章 .net Framework 4.6 WebAPI 使用Hangfire 文章目录 C# 使用 Hangfire前言一、hangfire是什么?二、hangfire的特点三、.net Framework 中hangfire的使用方法第一步:创建WebAPI控制器第二步:添加nuget包第三步 创建startup类新建项目startup类Startu…

算法笔记(七)——哈希表

文章目录 两数之和判定是否互为字符重排存在重复元素存在重复元素 II字母异位词分组 哈希表&#xff1a;一种存储数据的容器&#xff1b; 可以快速查找某个元素&#xff0c;时间复杂度O(1)&#xff1b; 当频繁查找某一个数时&#xff0c;我们可以使用哈希表 创建一个容器&#…

19款奔驰E300升级新款触摸屏人机交互系统

《19 款奔驰 E300 的科技焕新之旅》 在汽车科技日新月异的时代&#xff0c;19 款奔驰 E300 的车主们为了追求更卓越的驾驶体验&#xff0c;纷纷选择对爱车进行升级改装&#xff0c;其中新款触摸屏人机交互系统的改装成为了热门之选。 19 款奔驰 E300 作为一款经典车型&#x…

高炉计算笔记

一、总体概述 热风炉是一种重要的工业热能设备&#xff0c;通过燃烧燃料将水加热为蒸汽&#xff0c;用于驱动各种设备。在热风炉的运行过程中&#xff0c;烟气量是一个重要的参数&#xff0c;表示热风炉内燃料的利用率及运行效率。烟气量的计算公式如下&#xff1a; Q α Q…

iterator的使用+求数组中的第n大值+十大经典排序算法

目录 一、iterator的用法 二、求一个数组中的第n大值&#xff08;n为2或者3&#xff09; 1、求一个数组中的第二大值&#xff08;不能使用排序&#xff09; 2、求一个数组中的第三大值&#xff08;不能使用排序&#xff09; 三、冒泡排序 1、基本思想 2、代码实现 3、存…

【Unity踩坑】Unity更新Google Play结算库

一、问题描述&#xff1a; 在Google Play上提交了app bundle后&#xff0c;提示如下错误。 我使用的是Unity 2022.01.20f1&#xff0c;看来用的Play结算库版本是4.0 查了一下文档&#xff0c;Google Play结算库的维护周期是两年。现在需要更新到至少6.0。 二、更新过程 1. 下…