大数据技术:Hadoop、Spark与Flink的框架演进

大数据技术,特别是Hadoop、Spark与Flink的框架演进,是过去二十年中信息技术领域最引人注目的发展之一。这些技术不仅改变了数据处理的方式,而且还推动了对数据驱动决策和智能化的需求。在大数据处理领域,选择合适的大数据平台是确保数据处理效率和性能的关键。本文将深入比较Hadoop、Spark与Flink框架的优缺点,并为读者提供在不同场景下的选择建议。

Hadoop
Hadoop最初由Doug Cutting在2004年受MapReduce编程模型启发而开发,其名字来源于他儿子的玩具大象。Hadoop的演进主要围绕其三大核心组件:HDFS(Hadoop Distributed File System)、MapReduce和YARN(Yet Another Resource Negotiator)进行。
●Hadoop MapReduce:Hadoop版本的MapReduce编程模型,可以处理海量数据,主要面向批处理。●HDFS:HDFS全称为Hadoop Distributed File System,是Hadoop提供的分布式文件系统,有很好的扩展性和容错性。●YARN:YARN是Yet Another Resource Negotiator的缩写,是Hadoop生态系统中的资源调度器,可以管理一个Hadoop集群,并为各种类型的大数据任务分配计算资源。
这三大组件中,数据存储在HDFS上,由MapReduce负责计算,YARN负责集群的资源管理。除了三大核心组件,Hadoop生态圈还有很多其他著名的组件:●Hive:借助Hive,用户可以编写SQL语句来查询HDFS上的结构化数据,SQL会被转化成MapReduce执行。●HBase:HDFS上的数据量非常庞大,但访问和查询速度比较慢,HBase可以提供给用户毫秒级的实时查询服务,是一个基于HDFS的分布式数据库。●Storm:Strom是一款实时计算框架,主要负责流处理。●Zookeeper:Hadoop生态圈很多组件使用动物来命名,形成了一个大型动物园,Zookeeper是这个动物园的管理者,主要负责分布式环境的协调。

在这里插入图片描述

  1. Hadoop的优点稳定性高:Hadoop经过长时间验证,稳定性较高。适用于批处理: 在大规模批处理场景下表现出色。成熟的生态系统: 生态系统庞大,有丰富的工具和支持。2. Hadoop的缺点实时性差: 不适合处理对实时性要求较高的场景。编程模型相对复杂: 使用MapReduce需要编写大量代码。3.Hadoop的适用场景适用于需要稳定批处理的大规模数据处理场景,如离线数据分析。

Spark
Spark于2009年诞生于加州大学伯克利分校,2013年被捐献给Apache基金会。Spark是一款大数据计算框架,其初衷是改良Hadoop MapReduce的编程模型和执行速度。与Hadoop相比,Spark的改进主要有两点:● 易用性:比起MPI,MapReduce模型更友好,但仍然不够方便,因为并不是所有计算任务都可以简单拆分成map和reduce,有可能为了解决一个问题,要设计多个MapReduce任务,任务之间相互依赖,整个程序非常复杂,导致代码的可读性差。Spark提供更加方便易用的接口,提供Java、Scala、Python和R几种语言的API,支持SQL、机器学习和图计算,覆盖了绝大多数大数据计算的场景。● 速度快:Hadoop的map和reduce之间的中间结果都需要落地到磁盘上,而Spark尽量将大部分计算放在内存中,加上Spark的有向无环图优化,在官方的基准测试中,Spark比Hadoop快一百倍以上。
在这里插入图片描述

Spark的核心在于计算,主要目的在于优化Hadoop MapReduce计算部分,在计算层面提供更细致的服务,比如提供了常用几种数据科学语言的API,提供了SQL、机器学习和图计算支持,这些服务都是最终面向计算的。Spark并不能完全取代Hadoop,实际上,Spark融入到了Hadoop生态圈,成为其中的重要一元。一个Spark任务很可能依赖HDFS上的数据,向YARN来申请计算资源,将HBase作为输出结果的目的地。当然,Spark也可以不用依赖这些Hadoop组件,独立地完成计算。
在这里插入图片描述

Spark主要面向批处理需求,因其优异的性能和易用的接口,Spark已经是批处理界绝对的王者。Spark Streaming提供了流处理的功能,它的流处理主要基于mini-batch的思想,即将输入数据流拆分成多个批次,每个批次使用批处理的方式进行计算。因此,Spark是一款批量和流式于一体的计算框架。
1.Spark的优点高性能:Spark的内存计算模型使其在迭代算法和交互式查询中表现出色。多模块支持: 支持批处理、流处理、机器学习等多个模块。易用性: 相对于Hadoop的MapReduce,Spark的API更为友好。2.Spark的缺点对内存要求较高: 需要足够的内存来发挥其性能优势。相对年轻: 相对于Hadoop,Spark相对年轻,生态系统相对较小。3.Spark的适用场景适用于需要高性能批处理、交互式查询以及流处理的场景,如数据仓库和实时数据处理。

Flink
Flink是由德国几所大学发起的的学术项目,后来不断发展壮大,并于2014年末成为Apache顶级项目。Flink主要面向流处理,如果说Spark是批处理界的王者,那么Flink就是流处理领域的冉冉升起的新星。在Flink之前,不乏流式处理引擎,比较著名的有Storm、Spark Streaming,但某些特性远不如Flink。第一代被广泛采用的流处理框架是Strom。在多项基准测试中,Storm的数据吞吐量和延迟都远逊于Flink。Storm只支持"at least once"和"at most once",即数据流里的事件投递只能保证至少一次或至多一次,不能保证只有一次。对于很多对数据准确性要求较高的应用,Storm有一定劣势。第二代非常流行的流处理框架是Spark Streaming。Spark Streaming使用mini-batch的思想,每次处理一小批数据,一小批数据包含多个事件,以接近实时处理的效果。因为它每次计算一小批数据,因此总有一些延迟。但Spark Streaming的优势是拥有Spark这个靠山,用户从Spark迁移到Spark Streaming的成本较低,因此能给用户提供一个批量和流式于一体的计算框架。
在这里插入图片描述

Flink是与上述两代框架都不太一样的新一代计算框架,它是一个支持在有界和无界数据流上做有状态计算的大数据引擎。它以事件为单位,并且支持SQL、State、WaterMark等特性。它支持"exactly once",即事件投递保证只有一次,不多也不少,这样数据的准确性能得到提升。比起Storm,它的吞吐量更高,延迟更低,准确性能得到保障;比起Spark Streaming,它以事件为单位,达到真正意义上的实时计算,且所需计算资源相对更少。数据都是以流的形式产生的,数据可以分为有界(bounded)和无界(unbounded),批量处理其实就是一个有界的数据流,是流处理的一个特例。Flink基于这种思想,逐步发展成一个可支持流式和批量处理的大数据框架。经过几年的发展,Flink的API已经非常完善,可以支持Java、Scala和Python,并且支持SQL。Flink的Scala版API与Spark非常相似,有Spark经验的程序员可以用一个小时的时间熟悉Flink API。与Spark类似,Flink目前主要面向计算,并且可以与Hadoop生态高度集成。

1.Flink的优点流处理优势: 在流处理场景中表现出色,支持低延迟的数据处理。支持事件时间处理: 对于事件时间处理有较好的支持,适合实时分析。状态管理:Flink内置了强大的状态管理机制,便于处理有状态的计算。2.Flink的缺点相对较小的生态系统: 相对于Spark,Flink的生态系统相对较小。学习曲线较陡峭: 对于初学者,学习Flink可能相对较为复杂。3.Flink的适用场景适用于对实时性要求较高,需要流处理能力的场景,如实时数据分析和监控。

如何选择?
1.根据数据处理类型批处理: Hadoop适用于稳定的大规模批处理。交互式查询、流处理: Spark提供了全面的解决方案。实时流处理: Flink在实时性要求较高的场景中表现优越。2.根据学习曲线初学者: 对于初学者,Spark的API相对友好。经验丰富者:需要根据项目需求和个人经验权衡。3.根据性能需求对实时性要求不高: Hadoop可能是一个稳定的选择。高性能批处理: Spark在这方面有着卓越表现。实时流处理: Flink在这方面具有优势。
在选择大数据平台时,需根据项目需求、性能要求以及开发团队经验进行权衡。Hadoop、Spark和Flink各有优劣,选择适合自己项目的平台是提高大数据处理效率和性能的关键。希望本文能为读者提供对这三个主流大数据处理框架的深入了解,帮助做出明智的选择。
FineDataLink是一款低代码/高时效的数据集成平台,它不仅提供了数据清理和数据分析的功能,还能够将清理后的数据快速应用到其他应用程序中。FineDataLink的功能非常强大,可以轻松地连接多种数据源,包括数据库、文件、云存储等,而且支持大数据量。此外,FineDataLink还支持高级数据处理功能,例如数据转换、数据过滤、数据重构、数据集合等。使用FineDataLink可以显著提高团队协作效率,减少数据连接和输出的繁琐步骤,使整个数据处理流程更加高效和便捷。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/438748.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

有些硬盘录像机接入视频汇聚平台EasyCVR后通道不显示/显示不全,该如何处理?

EasyCVR视频监控汇聚管理平台是一款针对大中型项目设计的跨区域网络化视频监控集中管理平台。该平台不仅具备视频资源管理、设备管理、用户管理、运维管理和安全管理等功能,还支持多种主流标准协议,如GB28181、RTSP/Onvif、RTMP、部标JT808、GA/T 1400协…

排序算法剖析

文章目录 排序算法浅谈参考资料评价指标可视化工具概览 插入排序折半插入排序希尔排序冒泡排序快速排序简单选择排序堆排序归并排序基数排序 排序算法浅谈 参考资料 数据结构与算法 评价指标 稳定性:两个相同的关键字排序过后相对位置不发生变化时间复杂度空间复…

数据挖掘-padans初步使用

目录标题 Jupyter Notebook安装启动 Pandas快速入门查看数据验证数据建立索引数据选取⚠️注意:排序分组聚合数据转换增加列绘图line 或 **(默认):绘制折线图。bar:绘制条形图。barh:绘制水平条形图。hist&…

QT将QBytearray的data()指针赋值给结构体指针变量后数据不正确的问题

1、问题代码 #include <QCoreApplication>#pragma pack(push, 1) typedef struct {int a; // 4字节float b; // 4字节char c; // 1字节int *d; // 8字节 }testStruct; #pragma pack(pop)#include <QByteArray> #include <QDebug>int main() {testStruct …

leetcode练习 路径总和II

给你二叉树的根节点 root 和一个整数目标和 targetSum &#xff0c;找出所有 从根节点到叶子节点 路径总和等于给定目标和的路径。 叶子节点 是指没有子节点的节点。 示例 1&#xff1a; 输入&#xff1a;root [5,4,8,11,null,13,4,7,2,null,null,5,1], targetSum 22 输出&a…

告别传统互动:AI数字人正全面进入人类社会

大家好&#xff0c;我是Shelly&#xff0c;一个专注于输出AI工具和科技前沿内容的AI应用教练&#xff0c;体验过300款以上的AI应用工具。关注科技及大模型领域对社会的影响10年。关注我一起驾驭AI工具&#xff0c;拥抱AI时代的到来。 今天我们来聊聊AI数字人&#xff01; 当我…

全网最详细kubernetes中的资源

1、资源管理介绍 在kubernetes中&#xff0c;所有的内容都抽象为资源&#xff0c;用户需要通过操作资源来管理kubernetes。 kubernetes的本质上就是一个集群系统&#xff0c;用户可以在集群中部署各种服务。 所谓的部署服务&#xff0c;其实就是在kubernetes集群中运行一个个的…

C语言基础(7)之操作符(1)(详解)

目录 1. 各种操作符介绍 1.1 操作符汇总表 2. 移位操作符 2.1 移位操作符知识拓展 —— 原码、反码、补码 2.2 移位操作符讲解 2.2.1 右移操作符 ( >> ) 2.2.2 左移操作符 ( << ) 3. 位操作符 3.1 & (按位与) 3.2 | (按位或) 3.3 ^ (按位异或) 3.4…

gm/ID设计方法学习笔记(一)

前言&#xff1a;为什么需要gm/id &#xff08;一&#xff09;主流设计方法往往侧重于强反型区&#xff08;过驱>0.2V&#xff09;&#xff0c;低功耗设计则侧重于弱反型区&#xff08;<0&#xff09;&#xff0c;但现在缺乏对中反型区的简单和准确的手算模型。 1.对于…

10月2日笔记(内网资源探测篇)

内网资源探测 在内网渗透中&#xff0c;测试人员往往需要通过各种内网扫描技术来探测内网资源的情况&#xff0c;为后续的横向渗透做准备&#xff0c;通常需要发现内网存活的主机&#xff0c;并探测主机的操作系统、主机开放了哪些端口、端口上运行了哪些服务、服务的当前版本…

SQL SERVER 从嫌弃存储到爱上存储过程我给存储过程开发了版本控制工具和远程调试功能...

优缺点 SQL SERVER 爱上存储过程我给存储过程开发了版本控制工具和远程调试功能 先说说 存储过程的优缺点吧存储过程的优点 提高执行效率&#xff1a;存储过程是预编译的&#xff0c;执行速度较快&#xff0c;减少了网络传输量。 减少开发工作量&#xff1a;存储过程可以将复杂…

数据结构——对顺序线性表的操作

大家好啊&#xff0c;今天给大家分享一下对于顺序线性表的相关操作&#xff0c;跟随我的步伐来开始这一篇的学习吧&#xff01; 如果有知识性错误&#xff0c;欢迎各位指正&#xff01;&#xff01;一起加油&#xff01;&#xff01; 创作不易&#xff0c;希望大家多多支持哦…

中级软件设计师:一文搞懂下午第一题——数据流图技术

中级软件设计师&#xff1a;一文搞懂下午第一题——数据流图技术 0. 答题技巧-【11-12分】分必拿方法0. 本章的考点1. 数据流图的基本元素1.1 数据流1.2 加工1.3 数据存储(文件)1.4 外部实体1.5 分层数据流图&#xff08;DFD&#xff09;1.6 自顶至下&#xff0c;逐步精化1.6.1…

8645 归并排序(非递归算法)

### 思路 非递归归并排序通过逐步合并相邻的子数组来实现排序。每次合并后输出当前排序结果。 ### 伪代码 1. 读取输入的待排序关键字个数n。 2. 读取n个待排序关键字并存储在数组中。 3. 对数组进行非递归归并排序&#xff1a; - 初始化子数组的大小curr_size为1。 - 逐…

GO网络编程(二):客户端与服务端通信【重要】

本节是新知识&#xff0c;偏应用&#xff0c;需要反复练习才能掌握。 目录 1.C/S通信示意图2.服务端通信3.客户端通信4.通信测试5.进阶练习&#xff1a;客户端之间通信 1.C/S通信示意图 客户端与服务端通信的模式也称作C/S模式&#xff0c;流程图如下 其中P是协程调度器。可…

使用VBA快速生成Excel工作表非连续列图片快照

Excel中示例数据如下图所示。 现在需要拷贝A2:A15,D2:D15,J2:J15,L2:L15,R2:R15为图片&#xff0c;然后粘贴到A18单元格&#xff0c;如下图所示。 大家都知道VBA中Range对象有CopyPicture方法可以拷贝为图片&#xff0c;但是如果Range对象为非连续区域&#xff0c;那么将产生10…

Web安全 - 安全防御工具和体系构建

文章目录 安全标准和框架1. 国内安全标准&#xff1a;等级保护制度&#xff08;等保&#xff09;2. 国际安全标准&#xff1a;ISO27000系列3. NIST安全框架&#xff1a;IDPRR方法4. COBIT与ITIL框架 防火墙防火墙的基本作用防火墙的三种主要类型防火墙的防护能力防火墙的盲区 W…

【MATLAB2024b】安装离线帮助文档(windows)

文章目录 一、在 MATLAB 设置中安装二、从math works 网站下载ISO&#xff1a;给无法联网的电脑安装三、重要说明 版本&#xff1a;matlab 2024b&#xff08;或者大于等于2023a&#xff09; 所需空间&#xff1a;10~15 GB 平台&#xff1a;Windows 需要注册math works账号。 一…

【计算机网络】详解UDP协议格式特点缓冲区

一、UDP 协议端格式 16 位 UDP 长度, 表示整个数据报(UDP 首部UDP 数据)的最大长度&#xff1b;如果16位UDP检验和出错&#xff0c;报文会被直接丢弃。 1.1、检验和出错的几种常见情况 数据传输过程中的比特翻转&#xff1a;在数据传输过程中&#xff0c;由于物理介质或网络设…

UE5.4.3 录屏回放系统ReplaySystem蓝图版

这是ReplaySystem的蓝图使用方法版&#xff0c;以第三人称模版为例&#xff0c;需要几个必须步骤 项目config内DefaultEngine.ini的最后添加&#xff1a; [/Script/Engine.GameEngine] NetDriverDefinitions(DefName"DemoNetDriver",DriverClassName"/Script/…