如何安全地大规模部署 GenAI 应用程序

大型语言模型和其他形式的生成式人工智能(GenAI) 的广泛使用带来了许多组织可能没有意识到的安全风险。幸运的是,网络和安全提供商正在寻找方法来应对这些前所未有的威胁。

随着人工智能越来越深入地融入日常业务流程,它面临着泄露专有信息、提供错误答案或完全“产生幻觉”不存在的事实的风险。

必须通过新的政策和程序来应对这些陷阱,以确保人类对人工智能助手的监督——以及对不了解使用人工智能风险的人类进行监督和培训。

如果你考虑 [AI] 网络需求和安全风险,你会发现,你对业务数据和业务流程的集成越多,风险就越大。

想象一下,一个 AI 应用程序可能会直接集成到票务系统中,根据模型训练的智能接收票务并进行路由。

现在,该应用程序直接与业务流程集成。这会带来更多风险,因为很明显,如果该模型被黑客入侵,它可能会扰乱业务流程。

仅使用专有信息训练大型语言模型(LLM) AU 就会带来巨大的知识产权泄露风险,因为人工智能可能会在无害的答案中泄露商业或公司机密。

同样,让人工智能接触敏感的个人信息可能会无意中导致人工智能公开这些细节。

这些 LLM GenAI 引擎的功能之一是,它们可以发现人类无法发现的东西。

如果你想把这些发现暴露给那些不应该接触到它的人,他们可能比你更了解你的业务。

关注公众号网络研究观阅读

护栏至关重要

人工智能需要护栏。最重要的是控制人工智能可以访问哪些内容。

你需要制定正确的政策,以控制访问和保护数据隐私。在将这些应用程序更多地集成到流程中时,良好的访问控制和数据保护安全实践是首要前提。

Gen AI 的安全模型也强调数据丢失预防,这一术语应该扩大到涵盖更多内容。

现在有一个新术语叫做知识泄露预防,因为人工智能不仅仅涉及你的信用卡信息或PII 敏感数据,它实际上涉及你的知识产权。

人工智能的威胁防护

人工智能安全方法的第三支柱是威胁防护,阻止针对人工智能模型的各种类型的恶意攻击,这些攻击通常是旧伎俩的新花样。

就像所有可以使用的技术一样,它也可以被滥用。我们看到的攻击方式类似,但又有所不同。过去通常有 SQL 注入,现在有命令注入。还有数据中毒,我们知道 DNS 是如何被中毒的。情况类似。这些攻击很难识别。

威胁防护是一个很大的领域,OWASP 十大攻击实际上已经确定了人工智能安全领域的一些新兴类别。所以这是另一个需要关注的领域。

统一 SASE 即服务产品中的“一次性”数据包检查流程如何快速路由和保护 AI 网络流量。

一旦打开数据包流,你就可以做所有事情了,你要进行 QoS、压缩、WAN 优化,然后将其用于访问控制。

你可以根据用户、应用程序、位置、各种 URL、声誉、DNS、域等进行访问控制。

然后,你使用检测、签名匹配、异常、协议异常等对同一事物进行威胁防护,然后进行 CASB,匹配任何类型的 DLP。

安全性和效率

归根结底,这一切都是为了平衡安全性和效率。

如果使用太多安全产品,性能就会下降。如果试图简化变更管理和规则控制流程,实际上可能会降低其安全性。

如果试图加快速度,实际上会损害流程。因此,存在性能、灵活性、安全性等各种权衡。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/439544.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2.创建第一个MySQL存储过程(2/10)

引言 在现代数据库管理中,存储过程扮演着至关重要的角色。它们是一组为了执行特定任务而编写的SQL语句集合,这些语句被保存在数据库中,并且可以被多次调用执行。存储过程不仅可以提高数据库操作的效率,还能增强数据的安全性和一致…

Docker 启动 Neo4j:详细配置指南和浏览器访问

Docker 启动 Neo4j:详细配置指南和浏览器访问 文章目录 Docker 启动 Neo4j:详细配置指南和浏览器访问一 Neo4j compose 得 yml 配置二 配置描述三 浏览器访问 这篇文章详细介绍了如何使用 Docker Compose 启动 Neo4j 数据库,包括 docker-com…

八大排序--01冒泡排序

假设有一组数据 arr[]{2,0,3,4,5,7} 方法:开辟两个指针,指向如图,前后两两进行比较,大数据向后冒泡传递,小数据换到前面。 一次冒泡后,数组中最大…

C++ | Leetcode C++题解之第459题重复的子字符串

题目&#xff1a; 题解&#xff1a; class Solution { public:bool kmp(const string& query, const string& pattern) {int n query.size();int m pattern.size();vector<int> fail(m, -1);for (int i 1; i < m; i) {int j fail[i - 1];while (j ! -1 &…

java基础_异常总结详解

1 列举一些列举常见的运行时异常 运行时异常都是 RuntimeException 子类异常 NullPointerException - 空指针异常 ClassCastException - 类转换异常 IndexOutOfBoundsException - 下标越界异常 ArithmeticException - 计算异常 IllegalArgumentException - 非法参数异常 Numb…

Elasticsearch:使用 LLM 实现传统搜索自动化

作者&#xff1a;来自 Elastic Han Xiang Choong 这篇简短的文章是关于将结构化数据上传到 Elastic 索引&#xff0c;然后将纯英语查询转换为查询 DSL 语句&#xff0c;以使用特定过滤器和范围搜索特定条件。完整代码位于此 Github repo 中。 首先&#xff0c;运行以下命令安装…

小阿轩yx-案例:jenkins部署Maven和NodeJS项目

小阿轩yx-案例&#xff1a;jenkins部署Maven和NodeJS项目 前言 在 Java 项目开发中&#xff0c;项目的编译、测试、打包等是比较繁琐的&#xff0c;属于重复劳动的工作&#xff0c;浪费人力和时间成本。以往开发项目时&#xff0c;程序员往往需要花较多的精力在引用 jar 包搭…

STM32的串行外设接口SPI

一、SPI简介 1.SPI总线特点 &#xff08;1&#xff09;四条通信线 SPI需要SCK、MISO、MOSI、NSS四条通信线来完成数据传输 &#xff0c;每增加一个从机&#xff0c;多一条NSS通信线。 &#xff08;2&#xff09;多主多从 SPI总线允许有多个主机和多个从机。 &#xff08;3&…

Markdown实用语法汇总

说明&#xff1a; 本来只展示本人常用的、markdown特有优势的一些语法。表格输入markdown的弱项&#xff0c;不作介绍&#xff0c;借助软件创建即可。引用图片、音频、视频等&#xff0c;虽然很方便&#xff0c;但是内容集成度不高&#xff0c;需要上传发布的时候很不方便&…

Linux高级编程_29_信号

文章目录 进程间通讯 - 信号信号完整的信号周期信号的编号信号的产生发送信号1 kill 函数(他杀)作用&#xff1a;语法&#xff1a;示例&#xff1a; 2 raise函数(自杀)作用&#xff1a;示例&#xff1a; 3 abort函数(自杀)作用&#xff1a;语法&#xff1a;示例&#xff1a; 4 …

GB28181信令交互流程及Android端设备对接探讨

GB28181规范必要性 好多开发者在做比如执法记录仪、智能安全帽、智能监控等设备端视频回传技术方案选型的时候&#xff0c;不清楚到底是用RTSP、RTMP还是GB28181&#xff0c;对GB28181相对比较陌生&#xff0c;我们就GB28181规范的必要性&#xff0c;做个探讨&#xff1a; 实现…

Pikachu-File Inclusion- 本地文件包含

前端每次挑选篮球明星&#xff0c;都会通过get请求&#xff0c;传了文件名&#xff0c;把页面展示出来&#xff0c;由于文件名时前端传给后台;并且查看源码&#xff0c;没有对参数做限制&#xff1b; 尝试直接从前端修改filename 参数&#xff1b; filename../../../../../../…

C++ | Leetcode C++题解之第458题可怜的小猪

题目&#xff1a; 题解&#xff1a; class Solution { public:int poorPigs(int buckets, int minutesToDie, int minutesToTest) {if (buckets 1) {return 0;}vector<vector<int>> combinations(buckets 1,vector<int>(buckets 1));combinations[0][0] …

交换排序:冒泡排序、递归实现快速排序

目录 冒泡排序 1.冒泡排序的核心思想 2.冒泡排序的思路步骤 3.冒泡排序代码 4.代码分析 5.对冒泡排序的时间复杂度是O(N^2)进行解析 6.冒泡排序的特性总结 递归实现快速排序(二路划分版本) 1.快速排序基本思路 2.代码思路步骤 3.代码实现 4.代码分析 (1)递归终止条…

基于H3C环境的实验——OSPF

目录 实验设备和环境 实验设备 实验环境 实验记录 1、单区域 OSPF基本配置 步骤1:搭建实验环境并完成基本配置 步骤2:检查网络连通性和路由器路由表。 步骤3:配置OSPF 步骤4:检查路由器OSPF邻居状态及路由表 实验设备和环境 实验设备 三台路由器、两台PC、电源线、两…

10.5学习

1.GateWay GateWay⽬标是取代Netflflix Zuul&#xff0c;它基于Spring5.0SpringBoot2.0WebFlux等技术开发&#xff0c;提供统⼀的路由⽅式&#xff08;反向代理&#xff09;并且基于 Filter(定义过滤器对请求过滤&#xff0c;完成⼀些功能) 链的⽅式提供了⽹关基本的功能&…

海南网站建设提升网站用户体验实用技巧

海南网站建设提升网站用户体验实用技巧 在当今数字时代&#xff0c;网站已成为企业展示形象和吸引客户的重要平台。尤其对于海南这一旅游胜地来说&#xff0c;优化网站用户体验显得尤为重要。以下是一些实用技巧&#xff0c;可帮助您提升网站的用户体验。 首先&#xff0c;确保…

八、Drf解析器

八、解析器 8.1概念 解析用户请求发送过来的数据&#xff08;常用的是JSON&#xff09; 请求类型&#xff1a; get: ​ 方式1&#xff1a; http://127.0.0.1/web/?arg1v1&arg2v2 ​ 方式2&#xff1a;通过请求头发送 post: ​ 请求头&#xff1a; ​ content-typ…

dbeaver的使用

新增mysql连接 新增clickhouse 连接 新建编辑器 执行 结果&#xff0c;想看某条结果明细&#xff0c;选中某行安tab键 设置快捷键 窗口-》首选项-》用户界面-》键

论文 | Model-tuning Via Prompts Makes NLP Models Adversarially Robust

这篇论文研究了使用提示 (Prompting) 方法微调预训练语言模型&#xff0c;以提高其在对抗样本攻击下的鲁棒性。论文的主要贡献如下&#xff1a; 1.MVP 比 MLP-FT 更鲁棒&#xff1a; 论文比较了 MVP (Model-tuning Via Prompts) 和传统的 MLP-FT (Fine-tuning with an MLP head…