论文笔记:微表情欺骗检测

整理了AAAI2018 Deception Detection in Videos 论文的阅读笔记

  • 背景
  • 模型
  • 实验
  • 可视化

背景

  欺骗在我们的日常生活中很常见。一些谎言是无害的,而另一些谎言可能会产生严重的后果。例如,在法庭上撒谎可能会影响司法公正,让有罪的被告逍遥法外。因此,在高风险的情况下准确发现欺骗行为对个人和公共安全至关重要。
  人类辨别欺骗的能力是非常有限的。据研究,在没有特殊辅助的情况下,检测谎言的平均准确率为54%,仅略高于随机。相比于静态图像,人类通常更容易从视频中发现微妙的面部表情。图1显示了一个例子:眉毛上升。如果只给出左边的静态图像,人们很难发现眉毛在上升。相比之下,我们可以从右边的图像序列中清楚地看到眉毛在上升,尽管图像流的最后一张图像正好是左边的静态图像。
在这里插入图片描述
  此外,欺骗是一种复杂的人类行为,受试者试图抑制他们的欺骗证据,从面部表情到手势,从他们说话的方式到他们说的话。因此,一个可靠的欺骗检测方法应该集成来自多个模态的信息。
  本文建议使用运动动力学来识别面部微表情。通过一个用于捕获动态运行的两级特征表示器,对于低级特征表示,使用密集轨迹来表示运动和运动变化。对于高级表征,我们使用低级特征训练面部微表情检测器,并使用它们的置信度得分作为高级特征。

模型

  本文提出的自动欺骗检测框架如图2所示,包括3个步骤:多模态特征提取、特征编码和分类。
在这里插入图片描述
  作者通过IDT(改进密集轨迹)来捕获视频特征,这一方法在动作识别方面表现出色。此外,通过Glove和MFCC来提取语言和音频特征。由于每个视频的特征数量不同,作者采用Fisher矢量编码将可变数量的特征聚合到固定长度的矢量上。有关这一部分,这篇文章使用的方法和模型都比较老了,不再赘述。
  经过上述步骤,我们就得到了多模态的低级特征。之前的研究表明,面部微表情在预测欺骗行为中起着重要作用,而最能预测面部表情的五种微表情是:皱眉、扬眉、翘唇、撅唇和侧头,如图三所示。基于此,本文使用2015年的一个手工标注微表情检测数据集来训练微表情检测器,然后使用微表情检测器的预测分数作为高级特征来预测欺骗。
在这里插入图片描述
  在得到上述的微表情检测器后,本文将每个视频分成固定时长的短视频片段,并用微表情标签对这些片段进行标注。形式上,给定一个训练视频集 V = { v 1 ; v 2 , . . . , v N } V = \{v_1;v_2,...,v_N\} V={v1;v2,...,vN},将每个视频分成多个片段,得到训练集 C = { v i j } C=\{v_i^j\} C={vij},标注集 L = { l i j } i ∈ [ 1 , N ] L = \{l_i^j\}\ \ \ \ i\in [1,N] L={lij}    i[1,N]表示视频id,上标 j ∈ [ 1 , N i ] j\in [1,N_i] j[1,Ni]表示剪辑id, N i N_i Ni是视频 I I I的剪辑数, v I j v^j_I vIj的持续时间是一个常数(在我们的实现中是4秒)。 l i j l^j_i lij的维数是微表情的个数。利用视频片段 C C C训练一组微表情分类器,并将分类器应用到测试视频片段 C ^ \hat C C^上,得到预测分数 L ^ = { l ^ i j } \hat L=\{\hat l_i^j\} L^={l^ij}
  然后,分别用我们之前得到的低阶特征和视频级分数向量来训练4个二值欺骗分类器。分别是基于三个模态和混合得分向量。将这四个预测分数定义为 S m i , i ∈ [ 1 , 3 ] S_{m_i},i\in [1,3] Smi,i[1,3] S h i g h S_{high} Shigh,并得到最终的预测分数 S S S S = ∑ i α i S m i + α h i g h S h i g h S=\sum_i\alpha_iS_{m_i}+\alpha_{high}S_{high} S=iαiSmi+αhighShigh  其中, α i \alpha_i αi α h i g h \alpha_{high} αhigh是超参数,总和为1,并通过交叉验证得到。

实验

  本文在欺骗检测数据库上评估了该方法。该数据库包括121个法庭审判录像片段。这个试用数据库中的视频是来自网络的不受约束的视频。因此,我们需要处理人物视角的差异、视频质量的变化以及背景噪声,如图4所示。本文使用了来自121个视频数据库的104个视频的子集,其中包括50个真实视频和54个欺骗视频。修剪后的视频要么有明显的场景变化,要么有人工编辑。
在这里插入图片描述
  首先提供了微表情预测模块的性能。使用15帧/秒的帧率对每个视频剪辑进行采样。微表情检测器使用LibSVM的线性核支持向量机进行训练。结果如表1所示,报告了AUC (precision-recall curve下的面积)。尽管性能并不高,但代表微表情概率的高级特征在最终的欺骗检测任务中仍然提供了良好的性能。由于数据量的问题,使用深度学习的方法来训练检测器不太可行。
在这里插入图片描述
  对于欺骗检测,作者给出了不同的模态数据的组合结果,这实际上实在进行消融,我们可以观察到,组合所有预测的框架具有最好的效果。
在这里插入图片描述
  然后,作者又提出了一个有趣的问题,由于高级特征是经过训练的微表情检测器的预测分数,如果使用Ground Truth微表情特征,性能将如何受到影响。在接下来的实验中,我们使用GT微表情特征作为基线,并测试性能随其他特征模态的变化情况。表3显示了用AUC测量的结果:
在这里插入图片描述
  从表3的结果中,我们可以观察到最高的性能为0.9221 AUC,优于所提出的全自动化系统。这表明,开发更准确的微表情检测方法是未来提高欺骗检测的潜在方向。

可视化

  作者还研究了每个微表情的有效性。对于每个微表情,我们通过使用高级微表情评分特征、低级运动特征和其他模式来测试性能,如图5所示。
在这里插入图片描述
  我们可以观察到,无论是预测微表情还是真实微表情,“扬眉”都比其他微表情更有效。当使用预测的微表情时,“头侧转”也很有帮助,见图5a。这与从真实微表情中得到的结果不同。另一方面,“皱眉”使用地面真值特征比使用预测特征效果更好,可能是因为“皱眉”检测器不够准确,如表1所示。
  为了测试人类在这项任务上的表现,作者使用AMT进行用户研究。首先,我们让10个不同的人观看每个视频,并决定他们是否认为视频中的主题是真实的。每个注释者被分配5个不同身份的视频,以确保没有身份特定的偏见用于欺骗预测。我们还记录图像、音频或文本是否对他们的决定有帮助。请注意,这里的决策是使用所有模式做出的。每个视频的投票百分比被用作欺骗的分数。人为预测的AUC为0.8102。这表明这个数据集比以前的研究相对容易,在以前的研究中,人们对这项任务的预测几乎是偶然的。
  在做决定时,67:4%的用户依赖于视觉线索,61:3%的时间依赖于音频,70:7%的时间依赖于文本,如图6所示。
在这里插入图片描述

  对于每个视频,人们可以选择多种有用的模式。从这些数据中,可以观察到注意到人们倾向于根据口头内容做出决定,因为这是一个语义层面的特征。只有一半的人认为音频可以帮助他们做出决定,而在本文的系统中,音频功能是非常有效的。
  基于此,本文进行了另一项用户研究,一次只向每个用户显示一种模式,因为当多个信息来源同时可用时,很难判断哪个来源有助于做出最终决定。结果如图7所示。
在这里插入图片描述
  人类的表现和我们的系统之间存在巨大的表现差距。这表明,尽管人类缺乏仅凭视觉线索预测欺骗行为的能力,但基于计算机视觉的系统明显更好。另一方面,只有音频,人类的表现就像所有形式都可以访问一样好。但是当只提供视频文本时,人类和系统的性能都会显著下降。这表明音频信息对人类预测欺骗行为起着至关重要的作用,而文字记录则没有那么有益。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/439636.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

TIM(Timer)定时器的原理

一、介绍 硬件定时器的工作原理基于时钟信号源提供稳定的时钟信号作为计时器的基准。计数器从预设值开始计数,每当时钟信号到达时计数器递增。当计数器达到预设值时,定时器会触发一个中断信号通知中断控制器处理相应的中断服务程序。在中断服务程序中&a…

启动redis

1. 进入root的状态,sudo -i 2. 通过sudo find /etc/redis/ -name "redis.conf"找到redis.conf的路径 3. 切换到/etc/redis目录下,开启redis服务 4. ps aux | grep redis命令查看按当前redis进程,发现已经服务已经开启 5.关闭服务…

【Linux】进程控制(创建、终止、等待、替换)

文章目录 1. 进程创建2. 进程终止3. 进程等待4. 进程程序替换4.1 认识进程替换4.2 认识全部接口 1. 进程创建 如何创建进程我们已经在之前学习过了,无非就是使用fork(),它有两个返回值。创建成功,给父进程返回PID,给子进程返回0&…

解决:使用layui.treeTable.updateNode,更新表格数据后,done里面的事件丢失问题

1. 背景 在给树形表格添加行点击事件,并且只更新当前行数据。 treeTable.updateNode("SpeProjListId", result.LAY_DATA_INDEX, result);更新数据后,点击事件失效。 1. 给字段绑定事件: class"link_a link_style" , {…

AI2.0时代,普通小白如何通过AI月入30万

最近这2年AI真的太火了,很多人都在讨论怎么用AI赚钱、提高效率。其实,我觉得AI并没有那么复杂,尤其是如果你不做AI底层研究,只是利用它来帮你省事、提效、赚钱,那就像当初学用电脑、用手机一样简单。你不需要懂AI的技术…

论文阅读:PET/CT Cross-modal medical image fusion of lung tumors based on DCIF-GAN

摘要 背景: 基于GAN的融合方法存在训练不稳定,提取图像的局部和全局上下文语义信息能力不足,交互融合程度不够等问题 贡献: 提出双耦合交互式融合GAN(Dual-Coupled Interactive Fusion GAN,DCIF-GAN&…

Oracle 数据库安装和配置详解

Oracle 数据库安装和配置详解 Oracle 数据库是一款功能强大、广泛使用的企业级关系数据库管理系统 (RDBMS),适用于处理大型数据库和复杂事务。本文将介绍如何在 Linux 和 Windows 环境下安装 Oracle 数据库,并对其进行基本配置,帮助开发者快…

国外电商系统开发-运维系统拓扑布局

点击列表中设备字段,然后定位到【拓扑布局】中,可以看到拓扑发生了变化 再回头,您再次添加一个服务器到系统中,并且选择该服务器的连接节点为您刚才创建的“SDN路由器”,保存后,您可以看到这个服务器连接着…

红帽操作系统Linux基本命令2( Linux 网络操作系统 06)

本文接着上篇Linux常用命令-1继续往后学习其他常用命令。 2.3 目录操作类命令 1.mkdir命令 mkdir命令用于创建一个目录。该命令的语法为: 上述目录名可以为相对路径,也可以为绝对路径。 mkdir命令的常用参数选项如下。 -p:在创…

通过dem2terrain生成MapboxGL地形服务

概述 MapboxGL在2的版本之后通过地形服务开始支持三维的展示了,之前也有文章“mapboxGL2中Terrain的离线化应用”对该服务进行过说明与分析。前些天在翻公众号的时候翻到了dem2terrain可以生成地形服务,同时做了一些优化,今天就给大家分享一…

畅享免费服务:PDF 转图片在线转换软件的魅力

为了方便在社交媒体上分享文档内容,还为了更好地适应特定的编辑需求,将 PDF 文件转换为图片格式都具有重要的意义。而如今,幸运的是,有许多pdf转图片在线转换免费工具为我们提供了便捷、高效的 PDF 转图片服务。接下来&#xff0c…

MongoDB 数据库服务搭建(单机)

下载地址 下载测试数据 作者:程序那点事儿 日期:2023/02/15 02:16 进入下载页,选择版本后,右键Download复制连接地址 下载安装包 ​ wget https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-rhel70-5.0.14.tgz​ …

Redis: Sentinel哨兵监控架构及环境搭建

概述 在主从模式下,我们通过从节点只读模式提高了系统的并发能力并发不断增加,只需要扩展从节点即可,只要主从服务器之间,网络连接正常主服务器就会将写入自己的数据同步更新给从服务器,从而保证主从服务器的数据相同…

SQL自用小结

推荐一下这个知识点总结 《数据库系统概论》第五版 学习笔记总目录 1. SQL概述 SQL(Structured Query Language,结构化查询语言)是一种用于定义、查询、更新和控制关系数据库的标准化语言。 它包含了数据定义语言(DDL&#xff0…

51单片机系列-按键检测原理

🌈个人主页:羽晨同学 💫个人格言:“成为自己未来的主人~” 独立按键是检测低电平的。 下面我们来看一张对应的电路原理图: 在这张图当中,P1,P2,P3内部都上拉了电阻,但是P0没有&am…

码随想录算法训练营第62天|卡码网:97. 小明逛公园、127. 骑士的攻击

1. 卡码网 97. 小明逛公园 题目链接:https://kamacoder.com/problempage.php?pid1155 文章链接:https://www.programmercarl.com/kamacoder/0097.小明逛公园.html 思路: 使用Floyd 算法,目的是解决多源最短路问题,即 …

Java项目实战II基于Java+Spring Boot+MySQL的房产销售系统(源码+数据库+文档)

目录 一、前言 二、技术介绍 三、系统实现 四、文档参考 五、核心代码 六、源码获取 全栈码农以及毕业设计实战开发,CSDN平台Java领域新星创作者 一、前言 随着房地产市场的蓬勃发展,房产销售业务日益复杂,传统的手工管理方式已难以满…

机器学习/数据分析--用通俗语言讲解时间序列自回归(AR)模型,并用其预测天气,拟合度98%+

时间序列在回归预测的领域的重要性,不言而喻,在数学建模中使用及其频繁,但是你真的了解ARIMA、AR、MA么?ACF图你会看么?? 时间序列数据如何构造???,我打过不少…

EEPROM读写实验——FPGA学习笔记18

一、EEPROM简介 Electrically Erasable Progammable Read Only Memory:是指带电可擦可编程只读存储器,是一种常用的非易失性存储器(掉电数据不丢失) EEPROM发展历史 我们这次实验所用的AT24C64存储容量为64Kbit,内部分成256页&am…

Java--IO高级流

缓冲流 缓冲流,也叫高效流,是对4个基本的FileXxx 流的增强,所以也是4个流,按照数据类型分类: 字节缓冲流:BufferedInputStream,BufferedOutputStream 字符缓冲流:BufferedReader,Buf…