[C#]C# winform部署yolov11-pose姿态估计onnx模型

【算法介绍】

在C# WinForms应用中部署YOLOv11-Pose姿态估计ONNX模型是一项具有挑战性的任务。YOLOv11-Pose结合了YOLO(You Only Look Once)的高效物体检测算法和Pose Estimation(姿态估计)专注于识别人体关键点的能力,能在多种计算平台上实时处理人体姿态数据。

由于YOLOv11通常是用PyTorch等深度学习框架实现的,而OpenCV本身并不直接支持加载和运行PyTorch模型,因此需要先将PyTorch模型转换为ONNX格式,然后使用OpenCV的DNN模块加载ONNX模型。

部署过程中,需要确保开发环境已经安装了OpenCV 4.x(带有DNN模块)和必要的C#编译器。具体步骤包括加载ONNX模型、预处理输入图像、将预处理后的图像输入到模型中获取检测结果、对检测结果进行后处理等。由于YOLOv11是一个复杂的模型,其输出可能包含多个层的信息,因此需要仔细解析模型输出,并根据YOLOv11的具体实现进行后处理。

用户可以通过WinForms界面上传图像,应用程序则利用YOLOv11-Pose模型进行姿态估计,并在图像上标注出人体关键点的位置和类别。总的来说,虽然使用纯OpenCV部署YOLOv11-Pose ONNX模型需要深入理解相关领域的知识,但通过合理的步骤和优化,可以在C# WinForms应用中实现高效的人体姿态估计功能。

【效果展示】

 【实现部分代码】

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Diagnostics;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;
using OpenCvSharp;namespace FIRC
{public partial class Form1 : Form{Mat src = new Mat();Yolov11PoseManager ypm = new Yolov11PoseManager();public Form1(){InitializeComponent();}private void button1_Click(object sender, EventArgs e){OpenFileDialog openFileDialog = new OpenFileDialog();openFileDialog.Filter = "图文件(*.*)|*.jpg;*.png;*.jpeg;*.bmp";openFileDialog.RestoreDirectory = true;openFileDialog.Multiselect = false;if (openFileDialog.ShowDialog() == DialogResult.OK){src = Cv2.ImRead(openFileDialog.FileName);pictureBox1.Image = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(src);}}private void button2_Click(object sender, EventArgs e){if(pictureBox1.Image==null){return;}Stopwatch sw = new Stopwatch();sw.Start();var result = ypm.Inference(src);sw.Stop();this.Text = "耗时" + sw.Elapsed.TotalSeconds + "秒";var resultMat = ypm.DrawImage(src,result);pictureBox2.Image= OpenCvSharp.Extensions.BitmapConverter.ToBitmap(resultMat); //Mat转Bitmap}private void Form1_Load(object sender, EventArgs e){ypm.LoadWeights(Application.StartupPath+ "\\weights\\yolo11n-pose.onnx");}private void btn_video_Click(object sender, EventArgs e){var detector = new Yolov11PoseManager();detector.LoadWeights(Application.StartupPath + "\\weights\\yolo11-pose.onnx");VideoCapture capture = new VideoCapture(Application.StartupPath+ "\\images\\test.mp4");if (!capture.IsOpened()){Console.WriteLine("video not open!");return;}Mat frame = new Mat();var sw = new Stopwatch();int fps = 0;while (true){capture.Read(frame);if (frame.Empty()){Console.WriteLine("data is empty!");break;}sw.Start();var result = detector.Inference(frame);var resultImg = detector.DrawImage(frame,result);sw.Stop();fps = Convert.ToInt32(1 / sw.Elapsed.TotalSeconds);sw.Reset();Cv2.PutText(resultImg, "FPS=" + fps, new OpenCvSharp.Point(30, 30), HersheyFonts.HersheyComplex, 1.0, new Scalar(255, 0, 0), 3);//显示结果Cv2.ImShow("Result", resultImg);int key = Cv2.WaitKey(10);if (key == 27)break;}capture.Release();}}
}

【视频演示】

C# winform部署yolov11-pose姿态估计onnx模型_哔哩哔哩_bilibili测试环境:vs2019netframework4.7.2opencvsharp4.8.0onnxruntime1.16.3更多信息和源码下载参考博文:https://blog.csdn.net/FL1623863129/article/details/142729832, 视频播放量 1、弹幕量 0、点赞数 0、投硬币枚数 0、收藏人数 1、转发人数 0, 视频作者 未来自主研究中心, 作者简介 未来自主研究中心,相关视频:用C#部署yolov8的tensorrt模型进行目标检测winform最快检测速度,基于C#实现winform版yolov8-onnx+bytetrack目标追踪的算法结果演示,C# winform部署yolov11-obb旋转框检测onnx模型,C#使用纯opencvsharp部署yolov8-onnx图像分类模型,C# OpenCvSharp读取rtsp流录制mp4,C#部署官方yolov8-obb旋转框检测的onnx模型,C# winform使用纯opencvsharp部署yolox-onnx模型,C# winform基于opencvsharp实现15关键点人体姿态估计,为什么神经网络可以学习任何东西?首次使用动画讲解,带你吃透神经网络!(CNN卷积神经网络、RNN循环神经网络、GAN生成式对抗网络、人工智能、AI),使用C++部署yolov10目标检测的tensorrt模型支持图片视频推理windows测试通过icon-default.png?t=O83Ahttps://www.bilibili.com/video/BV1hG1iY6EQ5/
【源码下载】

https://download.csdn.net/download/FL1623863129/89852169
【测试环境】

vs2019

netframework4.7.2

opencvsharp4.8.0

onnxruntime1.16.3

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/440345.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Nacos架构 原理】内核设计之Nacos寻址机制

文章目录 前提设计内部实现单机寻址文件寻址地址服务器寻址 前提 对于集群模式,集群内的每个Nacos成员都需要相互通信。因此这就带来一个问题,该以何种方式去管理集群内部的Nacos成员节点信息,即Nacos内部的寻址机制。 设计 要能够感知到节…

LeetCode讲解篇之695. 岛屿的最大面积

文章目录 题目描述题解思路题解代码题目链接 题目描述 题解思路 我们遍历二维矩阵,如果当前格子的元素为1进行深度优先搜索,将搜索过的格子置为0,防止重复访问,然后对继续深度优先搜索上下左右中为1的格子 题解代码 func maxAr…

Redis实现每日签到(大数据量)

PHP语言使用Redis NoSQL服务器二进制数据类型实现大数据情况下签到功能 目录 问题 解决方式 封装签到类 功能调用 总结 问题 实现用户每日签到功能不难,但随着用户量上升之后,不论是存储还是判断对数据量来说都很麻烦;假如每天有100万用…

探索Spring Boot:实现“衣依”服装电商平台

1系统概述 1.1 研究背景 如今互联网高速发展,网络遍布全球,通过互联网发布的消息能快而方便的传播到世界每个角落,并且互联网上能传播的信息也很广,比如文字、图片、声音、视频等。从而,这种种好处使得互联网成了信息传…

通过 LLMs 自动探索量化投资策略

作者:老余捞鱼 原创不易,转载请标明出处及原作者。 写在前面的话: 本文提出了一个利用大型语言模型(LLMs)和多代理架构的新框架,用于量化股票投资和投资组合管理。该框架通过整合LLMs生成多样化的al…

【Unity】unity安卓打包参数(个人复习向/有不足之处欢迎指出/侵删)

1.Texture Compression 纹理压缩 设置发布后的纹理压缩格式 Use Player Settings:使用在播放器设置中设置的纹理压缩格式 ETC:使用ETC格式(兼容) ETC2:使用ETC2格式(很多设备不支持) ASTC:使用…

TypeScript:装饰器

一、简介 随着TypeScript和ES6里引入了类,在一些场景下我们需要额外的特性来支持标注或修改类及其成员。 装饰器(Decorators)为我们在类的声明及成员上通过元编程语法添加标注提供了一种方式。 Javascript里的装饰器目前处在 建议征集的第二阶…

Hadoop大数据入门——Hive-SQL语法大全

Hive SQL 语法大全 基于语法描述说明 CREATE DATABASE [IF NOT EXISTS] db_name [LOCATION] path; SELECT expr, ... FROM tbl ORDER BY col_name [ASC | DESC] (A | B | C)如上语法,在语法描述中出现: [],表示可选,如上[LOCATI…

大模型项目如何判断用RAG还是微调

大模型项目如何判断用RAG还是微调 在大模型项目中,选择使用检索增强生成(Retrieval-Augmented Generation, RAG)还是微调(Fine-Tuning)取决于多个因素,包括项目的具体需求、数据的可用性、性能要求、成本和…

浅谈汽车智能座舱如何实现多通道音频

一、引言 随着汽车智能座舱的功能迭代发展,传统的 4 通道、6 通道、8 通道等音响系统难以在满足驾驶场景的需求,未来对于智能座舱音频质量和通道数会越来越高。接下来本文将浅析目前智能座舱如何实现音频功放,以及如何实现多路音频功放方案。…

CSS基础-常见属性(二)

6、CSS三大特性 6.1 层叠性 如果样式发生冲突,则按照优先级进行覆盖。 6.2 继承性 元素自动继承其父元素、祖先元素所设置的某些元素,优先继承较近的元素。 6.3 优先级 6.3.1 简单分级 1、内联样式2、ID选择器3、类选择器/属性选择器4、标签名选择器/…

环境对于写作有何影响?

如果你是有灵性、热爱文学创作的人,多半就会喜欢安静的生活环境。因为你会感受到唯有在这样的环境里更才能够沉下心来思考创作的路径。而且此时的你,显得头脑清醒、思维活跃而自由,因之文思泉涌。 网络图:宁静的书房 反之&#x…

【数据结构】什么是平衡二叉搜索树(AVL Tree)?

🦄个人主页:修修修也 🎏所属专栏:数据结构 ⚙️操作环境:Visual Studio 2022 目录 📌AVL树的概念 📌AVL树的操作 🎏AVL树的插入操作 ↩️右单旋 ↩️↪️右左双旋 ↪️↩️左右双旋 ↪️左单旋 🎏AVL树的删…

SpringBoot驱动的明星周边产品电商解决方案

1系统概述 1.1 研究背景 如今互联网高速发展,网络遍布全球,通过互联网发布的消息能快而方便的传播到世界每个角落,并且互联网上能传播的信息也很广,比如文字、图片、声音、视频等。从而,这种种好处使得互联网成了信息传…

什么是 ARP 欺骗和缓存中毒攻击?

如果您熟悉蒙面歌王,您就会明白蒙面歌王的概念:有人伪装成别人。然后,当面具掉下来时,您会大吃一惊,知道了这位名人是谁。类似的事情也发生在 ARP 欺骗攻击中,只是令人惊讶的是,威胁行为者利用他…

网站集群批量管理-密钥认证与Ansible模块

一、集群批量管理-密钥认证 1、概述 管理更加轻松:两个节点,通过密钥形式进行访问,不需要输入密码,仅支持单向. 服务要求(应用场景): 一些服务在使用前要求我们做秘钥认证.手动写批量管理脚本. 名字: 密钥认证,免密码登录,双机互信. 2、原理 税钥对…

PyGWalker:让你的Pandas数据可视化更简单,快速创建数据可视化网站

1、PyGWalker应用: 在数据分析的过程中,数据的探索和可视化是至关重要的环节,如何高效地将分析结果展示给团队、客户,甚至是公众,是很多数据分析师和开发者面临的挑战,接下来介绍的两大工具组合——PyGWalker与Streamlit,可以帮助用户轻松解决这个问题,即使没有复杂的代…

VMware ESXi 7.0U3q macOS Unlocker OEM BIOS 2.7 Dell HPE 联想定制版 9 月更新发布

VMware ESXi 7.0U3q macOS Unlocker & OEM BIOS 2.7 Dell HPE 联想定制版 9 月更新发布 VMware ESXi 7.0U3q macOS Unlocker & OEM BIOS 2.7 标准版和厂商定制版 ESXi 7.0U3 标准版,Dell (戴尔)、HPE (慧与)、Lenovo (联想)、Inspur (浪潮)、Cisco (思科)…

五、存储引擎

文章目录 1. 查看存储引擎2. 设置系统默认的存储引擎3. 设置表的存储引擎3.1 创建表时指定存储引擎3.2 修改表的存储引擎4. 引擎介绍4.1 InnoDB 引擎:具备外键支持功能的事务存储引擎4.2 MyISAM 引擎:主要的非事务处理存储引擎5. MyISAM和InnoDB6. 阿里巴巴、淘宝用哪个课外补…

根据给定的相机和镜头参数,估算相机的内参。

1. 相机分辨率和传感器尺寸 最高分辨率:6000 4000 像素传感器尺寸:22.3 mm 14.9 mm 2. 计算像素大小 需要计算每个像素对应的实际尺寸(mm/pixel): 水平方向像素大小: 垂直方向像素大小: …