基于 Prometheus+Grafana+Alertmanager 搭建 K8S 云监控告警平台(附配置告警至QQ、钉钉)

文章目录

  • 一、机器规划
  • 二、部署安装 node-exporter、prometheus、Grafana、kube-state-metrics
    • 1、创建 monitor-sa 命名空间
    • 2、安装node-exporter组件
      • 2.1、说明
      • 2.2、应用资源清单
      • 2.3、通过node-exporter采集数据
    • 3、k8s 集群中部署 prometheus
      • 3.1、创建一个 sa 账号
      • 3.2、将 sa 账号 monitor 通过 clusterrolebing 绑定到 clusterrole 上
      • 3.3、创建数据目录
      • 3.4、安装prometheus
        • 3.4.1、将 `prometheus.yml` 文件以 ConfigMap 的形式进行管理
        • 3.4.2、应用 cm 资源清单
        • 3.4.3、通过 Deployment 部署 prometheus
        • 3.4.4、应用 prometheus 资源清单
        • 3.4.5、给 prometheus 的 pod 创建一个 svc
        • 3.4.6、应用 svc 资源清单
      • 3.5、访问prometheus UI界面
      • 3.6、查看配置的服务发现
    • 4、prometheus热更新
      • 4.1、热加载 prometheus
      • 4.2、暴力重启 prometheus
    • 5、Grafana安装和配置
      • 5.1、下载 Grafana 需要的镜像
      • 5.2、在 k8s 集群各个节点导入 Grafana 镜像
      • 5.3、master 节点创建 grafana.yaml
      • 5.4、查看 Grafana 的 pod 和 svc
      • 5.5、查看 Grafana UI 界面
      • 5.6、给 Grafana 接入 Prometheus 数据源
      • 5.7、获取监控模板
      • 5.8、导入监控模板
    • 6、安装配置 kube-state-metrics 组件
      • 6.1、什么是 kube-state-metrics
      • 6.2、创建 sa ,并进行授权
      • 6.3、创建并应用 kube-state-metrics-deploy.yaml 文件
      • 6.4、创建并应用 kube-state-metrics-svc.yaml 文件
      • 6.5、获取 kube-state-metrics json 文件
      • 6.6、向 Grafana 导入 kube-state-metrics json 文件
  • 三、安装和配置 Alertmanager -- 发送告警到 QQ 邮箱
    • 1、将 alertmanager-cm.yaml 文件以 cm 形式进行管理
      • 1.1、alertmanager配置文件说明
    • 2、重新生成并应用 prometheus-cfg.yaml 文件
    • 3、重新生成 prometheus-deploy.yaml 文件
      • 3.1、创建一个名为 etcd-certs 的 Secret
      • 3.2、应用 prometheus-deploy.yaml 文件
    • 4、重新生成并创建 alertmanager-svc.yaml 文件
    • 5、访问 prometheus UI 界面
      • 5.1、【error】kube-controller-manager、etcd、kube-proxy、kube-scheduler 组件 connection refused
        • 5.1.1、kube-proxy
        • 5.1.2、kube-controller-manager
        • 5.1.3、kube-schedule
        • 5.1.4、etcd
    • 6、点击Alerts,查看
    • 7、把controller-manager的cpu使用率大于90%展开
    • 8、登录 alertmanager UI
    • 9、登录 QQ 邮箱查看告警信息
  • 四、配置 Alertmanager 报警 -- 发送告警到钉钉
    • 1、手机端拉群
    • 2、创建自定义机器人
    • 3、获取钉钉的 Webhook 插件
    • 4、启动钉钉告警插件
    • 5、对 alertmanager-cm.yaml 文件做备份
    • 6、重新生成新的 alertmanager-cm.yaml 文件
    • 7、重建资源以生效
    • 8、效果

一、机器规划

角色主机名ip 地址
masterk8s-master1192.168.112.10
nodek8s-node1192.168.112.20
nodek8s-node2192.168.112.30
平台VMware Workstation
操作系统CentOS Linux release 7.9.2009 (Core)
内存、CPU4C4G
磁盘大小20G SCSI

二、部署安装 node-exporter、prometheus、Grafana、kube-state-metrics

1、创建 monitor-sa 命名空间

master 节点操作

kubectl create ns monitor-sa

2、安装node-exporter组件

master 节点操作

cat >> node-export.yaml  <<EOF
apiVersion: apps/v1
kind: DaemonSet
metadata:name: node-exporternamespace: monitor-salabels:name: node-exporter
spec:selector:matchLabels:name: node-exportertemplate:metadata:labels:name: node-exporterspec:hostPID: truehostIPC: truehostNetwork: truecontainers:- name: node-exporterimage: prom/node-exporter:v0.16.0ports:- containerPort: 9100resources:requests:cpu: 0.15securityContext:privileged: trueargs:- --path.procfs- /host/proc- --path.sysfs- /host/sys- --collector.filesystem.ignored-mount-points- '"^/(sys|proc|dev|host|etc)($|/)"'volumeMounts:- name: devmountPath: /host/dev- name: procmountPath: /host/proc- name: sysmountPath: /host/sys- name: rootfsmountPath: /rootfstolerations:- key: "node-role.kubernetes.io/master"operator: "Exists"effect: "NoSchedule"volumes:- name: prochostPath:path: /proc- name: devhostPath:path: /dev- name: syshostPath:path: /sys- name: rootfshostPath:path: /
EOF

2.1、说明

  • 主机命名空间共享 (hostPID, hostIPC, hostNetwork)
    • hostPID: true: 允许 Pod 使用主机的 PID 命名空间。Pod 可以看到主机上的所有进程
    • hostIPC: true: 允许 Pod 使用主机的 IPC 命名空间。Pod 可以与其他在主机上运行的进程共享 IPC 资源(如信号量、消息队列等)。
    • hostNetwork: true: 允许 Pod 使用主机的网络命名空间。Pod 将使用主机的网络接口
  • 命令行参数 (args)
  • --path.procfs /host/proc: 指定 node-exporter 应该从 /host/proc 路径读取进程文件系统的数据。这使得 node-exporter 可以访问宿主机的进程信息。
  • --path.sysfs /host/sys: 指定 node-exporter 应该从 /host/sys 路径读取系统文件系统的数据。这使得 node-exporter 可以访问宿主机的系统信息。
  • --collector.filesystem.ignored-mount-points "^/(sys|proc|dev|host|etc)($|/)": 指定哪些文件系统的挂载点应该被忽略,不被 node-exporter 收集。这里忽略了 /sys, /proc, /dev, /host, 和 /etc 这些挂载点,避免收集不必要的数据。
  • 挂载点 (volumeMountsvolumes)
    • /proc 挂载
      • 宿主机路径: /proc
      • 容器内路径: /host/proc
      • 作用:node-exporter 访问宿主机的进程文件系统。
    • /dev 挂载
      • 宿主机路径: /dev
      • 容器内路径: /host/dev
      • 作用:node-exporter 访问宿主机的设备文件。
    • /sys 挂载
      • 宿主机路径: /sys
      • 容器内路径: /host/sys
      • 作用:node-exporter 访问宿主机的系统文件系统。
    • / 挂载
      • 宿主机路径: /
      • 容器内路径: /rootfs
      • 作用:node-exporter 访问宿主机的根文件系统。
  • 容忍度 (tolerations)
    • key: "node-role.kubernetes.io/master": 指定容忍的污点键。
    • operator: "Exists": 表示只要存在该污点键,无论值是什么,都予以容忍。
    • effect: "NoSchedule": 表示即使节点上有这种污点,也不会阻止 Pod 被调度到该节点上。

2.2、应用资源清单

kubectl apply -f node-export.yamlkubectl get pods -n monitor-sa -l name=node-exporter

image-20241005214533113

2.3、通过node-exporter采集数据

node-export默认的监听端口是9100,可以看到当前主机获取到的所有监控数据

# curl http://<master-ip>:9100/metricscurl http://192.168.112.10:9100/metrics

image-20241005214626996

3、k8s 集群中部署 prometheus

3.1、创建一个 sa 账号

kubectl create serviceaccount monitor -n monitor-sa

3.2、将 sa 账号 monitor 通过 clusterrolebing 绑定到 clusterrole 上

kubectl create clusterrolebinding monitor-clusterrolebinding -n monitor-sa --clusterrole=cluster-admin  --serviceaccount=monitor-sa:monitor

3.3、创建数据目录

所有 node 节点

mkdir /data && chmod 777 /data/

3.4、安装prometheus

master 节点操作

3.4.1、将 prometheus.yml 文件以 ConfigMap 的形式进行管理
cat  >> prometheus-cfg.yaml << 'EOF'
---
kind: ConfigMap
apiVersion: v1
metadata:labels:app: prometheusname: prometheus-confignamespace: monitor-sa
data:prometheus.yml: |global:scrape_interval: 15sscrape_timeout: 10sevaluation_interval: 1mscrape_configs:- job_name: 'kubernetes-node'kubernetes_sd_configs:- role: noderelabel_configs:- source_labels: [__address__]regex: '(.*):10250'replacement: '${1}:9100'target_label: __address__action: replace- action: labelmapregex: __meta_kubernetes_node_label_(.+)- job_name: 'kubernetes-node-cadvisor'kubernetes_sd_configs:- role:  nodescheme: httpstls_config:ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crtbearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/tokenrelabel_configs:- action: labelmapregex: __meta_kubernetes_node_label_(.+)- target_label: __address__replacement: kubernetes.default.svc:443- source_labels: [__meta_kubernetes_node_name]regex: (.+)target_label: __metrics_path__replacement: '/api/v1/nodes/${1}/proxy/metrics/cadvisor'- job_name: 'kubernetes-apiserver'kubernetes_sd_configs:- role: endpointsscheme: httpstls_config:ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crtbearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/tokenrelabel_configs:- source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name]action: keepregex: default;kubernetes;https- job_name: 'kubernetes-service-endpoints'kubernetes_sd_configs:- role: endpointsrelabel_configs:- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape]action: keepregex: true- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme]action: replacetarget_label: __scheme__regex: (https?)- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path]action: replacetarget_label: __metrics_path__regex: (.+)- source_labels: [__address__, __meta_kubernetes_service_annotation_prometheus_io_port]action: replacetarget_label: __address__regex: ([^:]+)(?::\d+)?;(\d+)replacement: '$1:$2'- action: labelmapregex: __meta_kubernetes_service_label_(.+)- source_labels: [__meta_kubernetes_namespace]action: replacetarget_label: kubernetes_namespace- source_labels: [__meta_kubernetes_service_name]action: replacetarget_label: kubernetes_name 
EOF
3.4.2、应用 cm 资源清单
kubectl apply -f prometheus-cfg.yamlkubectl get cm prometheus-config -n monitor-sa -o yaml

需要确保 cm 正确解析了变量 $1、$2

不然 prometheus 获取不到对应的 IP 地址会无法正常监控

image-20241005215107744

3.4.3、通过 Deployment 部署 prometheus
cat >> prometheus-deploy.yaml << EOF
---
apiVersion: apps/v1
kind: Deployment
metadata:name: prometheus-servernamespace: monitor-salabels:app: prometheus
spec:replicas: 2selector:matchLabels:app: prometheuscomponent: server#matchExpressions:#- {key: app, operator: In, values: [prometheus]}#- {key: component, operator: In, values: [server]}template:metadata:labels:app: prometheuscomponent: serverannotations:prometheus.io/scrape: 'false'spec:affinity:podAntiAffinity:requiredDuringSchedulingIgnoredDuringExecution:- labelSelector:matchExpressions:- key: appoperator: Invalues:- prometheus- key: componentoperator: Invalues:- servertopologyKey: kubernetes.io/hostnameserviceAccountName: monitorcontainers:- name: prometheusimage: quay.io/prometheus/prometheus:latestimagePullPolicy: IfNotPresentcommand:- prometheus- --config.file=/etc/prometheus/prometheus.yml- --storage.tsdb.path=/prometheus- --storage.tsdb.retention=720hports:- containerPort: 9090protocol: TCPvolumeMounts:- mountPath: /etc/prometheus/prometheus.ymlname: prometheus-configsubPath: prometheus.yml- mountPath: /prometheus/name: prometheus-storage-volumevolumes:- name: prometheus-configconfigMap:name: prometheus-configitems:- key: prometheus.ymlpath: prometheus.ymlmode: 0644- name: prometheus-storage-volumehostPath:path: /datatype: Directory
EOF
3.4.4、应用 prometheus 资源清单
kubectl apply -f prometheus-deploy.yaml

image-20241005215357542

3.4.5、给 prometheus 的 pod 创建一个 svc
cat  > prometheus-svc.yaml << EOF
---
apiVersion: v1
kind: Service
metadata:name: prometheusnamespace: monitor-salabels:app: prometheus
spec:type: NodePortports:- port: 9090targetPort: 9090protocol: TCPselector:app: prometheuscomponent: server
EOF
3.4.6、应用 svc 资源清单
kubectl get svc -n monitor-sa -o wide

image-20241005215425028

通过上面可以看到service在宿主机上映射的端口是30172,这样我们访问k8s集群的k8s-master1节点的ip:30172,就可以访问到prometheus的web ui界面了

3.5、访问prometheus UI界面

# <k8s-master1 IP>:32032
192.168.112.10:32032

image-20241005215529171

3.6、查看配置的服务发现

点击页面的Status->Targets,可看到如下,说明我们配置的服务发现可以正常采集数据

image-20241005221024862

4、prometheus热更新

4.1、热加载 prometheus

#为了每次修改配置文件可以热加载prometheus,也就是不停止prometheus,就可以使配置生效,如修改prometheus-cfg.yaml,想要使配置生效可用如下热加载命令:

curl -X POST http://<prometheus-pod-ip>:9090/-/reload
kubectl get pods -n monitor-sa -l app=prometheus -o wide

image-20241005221822766

4.2、暴力重启 prometheus

热加载速度比较慢,可以暴力重启prometheus

如修改上面的prometheus-cfg.yaml文件之后,可执行如下强制删除

kubectl delete -f prometheus-cfg.yamlkubectl delete -f prometheus-deploy.yaml# 然后再通过apply更新kubectl apply -f prometheus-cfg.yamlkubectl apply -f prometheus-deploy.yaml

线上最好热加载,暴力删除可能造成监控数据的丢失

5、Grafana安装和配置

5.1、下载 Grafana 需要的镜像

链接:https://pan.baidu.com/s/1TmVGKxde_cEYrbjiETboEA 
提取码:052u

5.2、在 k8s 集群各个节点导入 Grafana 镜像

docker load -i heapster-grafana-amd64_v5_0_4.tar.gzdocker images | grep grafana

image-20241005231752018

image-20241005231829736

image-20241005231844131

5.3、master 节点创建 grafana.yaml

cat >> grafana.yaml << EOF
apiVersion: apps/v1
kind: Deployment
metadata:name: monitoring-grafananamespace: kube-system
spec:replicas: 1selector:matchLabels:task: monitoringk8s-app: grafanatemplate:metadata:labels:task: monitoringk8s-app: grafanaspec:containers:- name: grafanaimage: k8s.gcr.io/heapster-grafana-amd64:v5.0.4ports:- containerPort: 3000protocol: TCPvolumeMounts:- mountPath: /etc/ssl/certsname: ca-certificatesreadOnly: true- mountPath: /varname: grafana-storageenv:- name: INFLUXDB_HOSTvalue: monitoring-influxdb- name: GF_SERVER_HTTP_PORTvalue: "3000"# The following env variables are required to make Grafana accessible via# the kubernetes api-server proxy. On production clusters, we recommend# removing these env variables, setup auth for grafana, and expose the grafana# service using a LoadBalancer or a public IP.- name: GF_AUTH_BASIC_ENABLEDvalue: "false"- name: GF_AUTH_ANONYMOUS_ENABLEDvalue: "true"- name: GF_AUTH_ANONYMOUS_ORG_ROLEvalue: Admin- name: GF_SERVER_ROOT_URL# If you're only using the API Server proxy, set this value instead:# value: /api/v1/namespaces/kube-system/services/monitoring-grafana/proxyvalue: /volumes:- name: ca-certificateshostPath:path: /etc/ssl/certs- name: grafana-storageemptyDir: {}
---
apiVersion: v1
kind: Service
metadata:labels:# For use as a Cluster add-on (https://github.com/kubernetes/kubernetes/tree/master/cluster/addons)# If you are NOT using this as an addon, you should comment out this line.kubernetes.io/cluster-service: 'true'kubernetes.io/name: monitoring-grafananame: monitoring-grafananamespace: kube-system
spec:# In a production setup, we recommend accessing Grafana through an external Loadbalancer# or through a public IP.# type: LoadBalancer# You could also use NodePort to expose the service at a randomly-generated port# type: NodePortports:- port: 80targetPort: 3000selector:k8s-app: grafanatype: NodePort
EOF

5.4、查看 Grafana 的 pod 和 svc

image-20241005232832195

5.5、查看 Grafana UI 界面

# <master-ip>:<grafana-svc-port>192.168.112.10:31455

image-20241006150242320

5.6、给 Grafana 接入 Prometheus 数据源

选择 Create your first data source
image-20241006150534861
image-20241006150624325
Name: Prometheus |Type: Prometheus|HTTP 处的URL写 如下:http://prometheus.monitor-sa.svc:9090
image-20241006151022903
点击左下角 Save & Test,出现如下 Data source is working,说明 prometheus 数据源成功的被 grafana 接入了
image-20241006151134680
image-20241006151148648

5.7、获取监控模板

  • 可以在 Grafana Dashboard 官网搜索需要的

Grafana dashboards | Grafana Labs

  • 也可以直接克隆 Github 仓库,获取 node_exporter.json 、 docker_rev1.json 监控模板
git clone git@github.com:misakivv/Grafana-Dashboard.git

5.8、导入监控模板

依次点击左侧栏的 + 号下方的 Import
image-20241006152716109
选择 Upload json file,选择一个本地的node_exporter.json 文件
image-20241006153035574
导入后 Options 选项中会出现 Name 是自动生成的,Prometheus 是需要我们选择 Prometheus的
image-20241006153231878
点击 Import 即可出现如下界面
image-20241006153455006
按照如上操作,导入docker_rev1.json监控模板
image-20241006153635176
image-20241006153710723

6、安装配置 kube-state-metrics 组件

6.1、什么是 kube-state-metrics

kube-state-metrics通过监听API Server生成有关资源对象的状态指标,比如Deployment、Node、Pod,需要注意的是kube-state-metrics只是简单的提供一个metrics数据,并不会存储这些指标数据,所以我们可以使用Prometheus来抓取这些数据然后存储,主要关注的是业务相关的一些元数据,比如Deployment、Pod、副本状态等;调度了多少个replicas?现在可用的有几个?多少个Pod是running/stopped/terminated状态?Pod重启了多少次?有多少job在运行中。

6.2、创建 sa ,并进行授权

k8s-master1 节点编写一个 kube-state-metrics-rbac.yaml 文件

cat >> kube-state-metrics-rbac.yaml << EOF
---
apiVersion: v1
kind: ServiceAccount
metadata:name: kube-state-metricsnamespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:name: kube-state-metrics
rules:
- apiGroups: [""]resources: ["nodes", "pods", "services", "resourcequotas", "replicationcontrollers", "limitranges", "persistentvolumeclaims", "persistentvolumes", "namespaces", "endpoints"]verbs: ["list", "watch"]
- apiGroups: ["extensions"]resources: ["daemonsets", "deployments", "replicasets"]verbs: ["list", "watch"]
- apiGroups: ["apps"]resources: ["statefulsets"]verbs: ["list", "watch"]
- apiGroups: ["batch"]resources: ["cronjobs", "jobs"]verbs: ["list", "watch"]
- apiGroups: ["autoscaling"]resources: ["horizontalpodautoscalers"]verbs: ["list", "watch"]
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:name: kube-state-metrics
roleRef:apiGroup: rbac.authorization.k8s.iokind: ClusterRolename: kube-state-metrics
subjects:
- kind: ServiceAccountname: kube-state-metricsnamespace: kube-system
EOF
kubectl get sa,clusterrole,clusterrolebinding -n kube-system | grep kube-state-metrics

image-20241006155708266

6.3、创建并应用 kube-state-metrics-deploy.yaml 文件

k8s-master1 节点操作

cat > kube-state-metrics-deploy.yaml <<EOF
apiVersion: apps/v1
kind: Deployment
metadata:name: kube-state-metricsnamespace: kube-system
spec:replicas: 1selector:matchLabels:app: kube-state-metricstemplate:metadata:labels:app: kube-state-metricsspec:serviceAccountName: kube-state-metricscontainers:- name: kube-state-metrics
#        image: gcr.io/google_containers/kube-state-metrics-amd64:v1.3.1image: quay.io/coreos/kube-state-metrics:latestports:- containerPort: 8080
EOF
kubectl apply -f kube-state-metrics-deploy.yamlkubectl get pods -n kube-system -l app=kube-state-metrics -w

image-20241006162620908

拉取 kube-state-metrics 指定镜像版本失败时可以选择在集群各个节点上

docker pull quay.io/coreos/kube-state-metrics:latest

拉取最新 tag 版本

image-20241006162304963

6.4、创建并应用 kube-state-metrics-svc.yaml 文件

k8s-master1 节点操作

cat >> kube-state-metrics-svc.yaml <<EOF
apiVersion: v1
kind: Service
metadata:annotations:prometheus.io/scrape: 'true'name: kube-state-metricsnamespace: kube-systemlabels:app: kube-state-metrics
spec:ports:- name: kube-state-metricsport: 8080protocol: TCPselector:app: kube-state-metrics
EOF
kubectl apply -f kube-state-metrics-svc.yamlkubectl get svc -n kube-system -l app=kube-state-metrics

image-20241006163135415

6.5、获取 kube-state-metrics json 文件

git clone git@github.com:misakivv/Grafana-Dashboard.git

image-20241006163929057

6.6、向 Grafana 导入 kube-state-metrics json 文件

点击左侧栏 + 号的 Import
image-20241006163710887
点击 Upload .json File,上传 Kubernetes Cluster (Prometheus)-1577674936972.json
image-20241006164143527
image-20241006164305915
查看
image-20241006165042653
**同样的导入 Kubernetes cluster monitoring (via Prometheus) (k8s 1.16)-1577691996738.json **
image-20241006165253781
image-20241006165821679
image-20241006165850539
image-20241006165912093
image-20241006165931820
image-20241006165949255
image-20241006170018099
image-20241006170044368

三、安装和配置 Alertmanager – 发送告警到 QQ 邮箱

1、将 alertmanager-cm.yaml 文件以 cm 形式进行管理

k8s-master1 节点操作

cat >> alertmanager-cm.yaml << EOF
kind: ConfigMap
apiVersion: v1
metadata:name: alertmanagernamespace: monitor-sa
data:alertmanager.yml: |-global:resolve_timeout: 1msmtp_smarthost: 'smtp.qq.com:465'smtp_from: '2830909671@qq.com'smtp_auth_username: '2830909671@qq.com'smtp_auth_password: 'ajjgpgwwfkpcdgih'smtp_require_tls: falseroute:group_by: [alertname]group_wait: 5sgroup_interval: 5srepeat_interval: 5mreceiver: default-receiverreceivers:- name: 'default-receiver'email_configs:- to: 'misakikk@qq.com'send_resolved: true
EOF
kubectl apply -f alertmanager-cm.yamlkubectl get cm alertmanager -n monitor-sa

image-20241006174637564

1.1、alertmanager配置文件说明

smtp_smarthost: 'smtp.qq.com:465'
#用于发送邮件的邮箱的SMTP服务器地址+端口。QQ 邮箱 SMTP 服务地址,官方地址为 smtp.qq.com 端口为 465 或 587,同时要设置开启 POP3/SMTP 服务。
smtp_from: '2830909671@qq.com'
#这是指定从哪个邮箱发送报警
smtp_auth_password: 'ajjgpgwwfkpcdgih'
#这是发送邮箱的授权码而不是登录密码
email_configs:- to: 'misakikk@qq.com'
#to后面指定发送到哪个邮箱

2、重新生成并应用 prometheus-cfg.yaml 文件

k8s-master1 节点操作

cat > prometheus-cfg.yaml << 'EOF'
kind: ConfigMap
apiVersion: v1
metadata:labels:app: prometheusname: prometheus-confignamespace: monitor-sa
data:prometheus.yml: |rule_files:- /etc/prometheus/rules.ymlalerting:alertmanagers:- static_configs:- targets: ["localhost:9093"]global:scrape_interval: 15sscrape_timeout: 10sevaluation_interval: 1mscrape_configs:- job_name: 'kubernetes-node'kubernetes_sd_configs:- role: noderelabel_configs:- source_labels: [__address__]regex: '(.*):10250'replacement: '${1}:9100'target_label: __address__action: replace- action: labelmapregex: __meta_kubernetes_node_label_(.+)- job_name: 'kubernetes-node-cadvisor'kubernetes_sd_configs:- role:  nodescheme: httpstls_config:ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crtbearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/tokenrelabel_configs:- action: labelmapregex: __meta_kubernetes_node_label_(.+)- target_label: __address__replacement: kubernetes.default.svc:443- source_labels: [__meta_kubernetes_node_name]regex: (.+)target_label: __metrics_path__replacement: '/api/v1/nodes/${1}/proxy/metrics/cadvisor'- job_name: 'kubernetes-apiserver'kubernetes_sd_configs:- role: endpointsscheme: httpstls_config:ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crtbearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/tokenrelabel_configs:- source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name]action: keepregex: default;kubernetes;https- job_name: 'kubernetes-service-endpoints'kubernetes_sd_configs:- role: endpointsrelabel_configs:- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape]action: keepregex: true- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme]action: replacetarget_label: __scheme__regex: (https?)- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path]action: replacetarget_label: __metrics_path__regex: (.+)- source_labels: [__address__, __meta_kubernetes_service_annotation_prometheus_io_port]action: replacetarget_label: __address__regex: ([^:]+)(?::\d+)?;(\d+)replacement: '$1:$2'- action: labelmapregex: __meta_kubernetes_service_label_(.+)- source_labels: [__meta_kubernetes_namespace]action: replacetarget_label: kubernetes_namespace- source_labels: [__meta_kubernetes_service_name]action: replacetarget_label: kubernetes_name - job_name: 'kubernetes-pods'kubernetes_sd_configs:- role: podrelabel_configs:- action: keepregex: truesource_labels:- __meta_kubernetes_pod_annotation_prometheus_io_scrape- action: replaceregex: (.+)source_labels:- __meta_kubernetes_pod_annotation_prometheus_io_pathtarget_label: __metrics_path__- action: replaceregex: ([^:]+)(?::\d+)?;(\d+)replacement: '$1:$2'source_labels:- __address__- __meta_kubernetes_pod_annotation_prometheus_io_porttarget_label: __address__- action: labelmapregex: __meta_kubernetes_pod_label_(.+)- action: replacesource_labels:- __meta_kubernetes_namespacetarget_label: kubernetes_namespace- action: replacesource_labels:- __meta_kubernetes_pod_nametarget_label: kubernetes_pod_name- job_name: 'kubernetes-schedule'scrape_interval: 5sstatic_configs:- targets: ['192.168.112.10:10259']- job_name: 'kubernetes-controller-manager'scrape_interval: 5sstatic_configs:- targets: ['192.168.112.10:10257']- job_name: 'kubernetes-kube-proxy'scrape_interval: 5sstatic_configs:- targets: ['192.168.112.10:10249','192.168.112.20:10249','192.168.112.30:10249']- job_name: 'kubernetes-etcd'scheme: httpstls_config:ca_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/ca.crtcert_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/server.crtkey_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/server.keyscrape_interval: 5sstatic_configs:- targets: ['192.168.112.10:2381']rules.yml: |groups:- name: examplerules:- alert: kube-proxy的cpu使用率大于80%expr: rate(process_cpu_seconds_total{job=~"kubernetes-kube-proxy"}[1m]) * 100 > 80for: 2slabels:severity: warnningannotations:description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"- alert:  kube-proxy的cpu使用率大于90%expr: rate(process_cpu_seconds_total{job=~"kubernetes-kube-proxy"}[1m]) * 100 > 90for: 2slabels:severity: criticalannotations:description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"- alert: scheduler的cpu使用率大于80%expr: rate(process_cpu_seconds_total{job=~"kubernetes-schedule"}[1m]) * 100 > 80for: 2slabels:severity: warnningannotations:description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"- alert:  scheduler的cpu使用率大于90%expr: rate(process_cpu_seconds_total{job=~"kubernetes-schedule"}[1m]) * 100 > 90for: 2slabels:severity: criticalannotations:description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"- alert: controller-manager的cpu使用率大于80%expr: rate(process_cpu_seconds_total{job=~"kubernetes-controller-manager"}[1m]) * 100 > 80for: 2slabels:severity: warnningannotations:description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"- alert:  controller-manager的cpu使用率大于90%expr: rate(process_cpu_seconds_total{job=~"kubernetes-controller-manager"}[1m]) * 100 > 0for: 2slabels:severity: criticalannotations:description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"- alert: apiserver的cpu使用率大于80%expr: rate(process_cpu_seconds_total{job=~"kubernetes-apiserver"}[1m]) * 100 > 80for: 2slabels:severity: warnningannotations:description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"- alert:  apiserver的cpu使用率大于90%expr: rate(process_cpu_seconds_total{job=~"kubernetes-apiserver"}[1m]) * 100 > 90for: 2slabels:severity: criticalannotations:description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"- alert: etcd的cpu使用率大于80%expr: rate(process_cpu_seconds_total{job=~"kubernetes-etcd"}[1m]) * 100 > 80for: 2slabels:severity: warnningannotations:description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"- alert:  etcd的cpu使用率大于90%expr: rate(process_cpu_seconds_total{job=~"kubernetes-etcd"}[1m]) * 100 > 90for: 2slabels:severity: criticalannotations:description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"- alert: kube-state-metrics的cpu使用率大于80%expr: rate(process_cpu_seconds_total{k8s_app=~"kube-state-metrics"}[1m]) * 100 > 80for: 2slabels:severity: warnningannotations:description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过80%"value: "{{ $value }}%"threshold: "80%"      - alert: kube-state-metrics的cpu使用率大于90%expr: rate(process_cpu_seconds_total{k8s_app=~"kube-state-metrics"}[1m]) * 100 > 0for: 2slabels:severity: criticalannotations:description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过90%"value: "{{ $value }}%"threshold: "90%"      - alert: coredns的cpu使用率大于80%expr: rate(process_cpu_seconds_total{k8s_app=~"kube-dns"}[1m]) * 100 > 80for: 2slabels:severity: warnningannotations:description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过80%"value: "{{ $value }}%"threshold: "80%"      - alert: coredns的cpu使用率大于90%expr: rate(process_cpu_seconds_total{k8s_app=~"kube-dns"}[1m]) * 100 > 90for: 2slabels:severity: criticalannotations:description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过90%"value: "{{ $value }}%"threshold: "90%"      - alert: kube-proxy打开句柄数>600expr: process_open_fds{job=~"kubernetes-kube-proxy"}  > 600for: 2slabels:severity: warnningannotations:description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"value: "{{ $value }}"- alert: kube-proxy打开句柄数>1000expr: process_open_fds{job=~"kubernetes-kube-proxy"}  > 1000for: 2slabels:severity: criticalannotations:description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"value: "{{ $value }}"- alert: kubernetes-schedule打开句柄数>600expr: process_open_fds{job=~"kubernetes-schedule"}  > 600for: 2slabels:severity: warnningannotations:description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"value: "{{ $value }}"- alert: kubernetes-schedule打开句柄数>1000expr: process_open_fds{job=~"kubernetes-schedule"}  > 1000for: 2slabels:severity: criticalannotations:description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"value: "{{ $value }}"- alert: kubernetes-controller-manager打开句柄数>600expr: process_open_fds{job=~"kubernetes-controller-manager"}  > 600for: 2slabels:severity: warnningannotations:description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"value: "{{ $value }}"- alert: kubernetes-controller-manager打开句柄数>1000expr: process_open_fds{job=~"kubernetes-controller-manager"}  > 1000for: 2slabels:severity: criticalannotations:description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"value: "{{ $value }}"- alert: kubernetes-apiserver打开句柄数>600expr: process_open_fds{job=~"kubernetes-apiserver"}  > 600for: 2slabels:severity: warnningannotations:description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"value: "{{ $value }}"- alert: kubernetes-apiserver打开句柄数>1000expr: process_open_fds{job=~"kubernetes-apiserver"}  > 1000for: 2slabels:severity: criticalannotations:description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"value: "{{ $value }}"- alert: kubernetes-etcd打开句柄数>600expr: process_open_fds{job=~"kubernetes-etcd"}  > 600for: 2slabels:severity: warnningannotations:description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"value: "{{ $value }}"- alert: kubernetes-etcd打开句柄数>1000expr: process_open_fds{job=~"kubernetes-etcd"}  > 1000for: 2slabels:severity: criticalannotations:description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"value: "{{ $value }}"- alert: corednsexpr: process_open_fds{k8s_app=~"kube-dns"}  > 600for: 2slabels:severity: warnning annotations:description: "插件{{$labels.k8s_app}}({{$labels.instance}}): 打开句柄数超过600"value: "{{ $value }}"- alert: corednsexpr: process_open_fds{k8s_app=~"kube-dns"}  > 1000for: 2slabels:severity: criticalannotations:description: "插件{{$labels.k8s_app}}({{$labels.instance}}): 打开句柄数超过1000"value: "{{ $value }}"- alert: kube-proxyexpr: process_virtual_memory_bytes{job=~"kubernetes-kube-proxy"}  > 2000000000for: 2slabels:severity: warnningannotations:description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"value: "{{ $value }}"- alert: schedulerexpr: process_virtual_memory_bytes{job=~"kubernetes-schedule"}  > 2000000000for: 2slabels:severity: warnningannotations:description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"value: "{{ $value }}"- alert: kubernetes-controller-managerexpr: process_virtual_memory_bytes{job=~"kubernetes-controller-manager"}  > 2000000000for: 2slabels:severity: warnningannotations:description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"value: "{{ $value }}"- alert: kubernetes-apiserverexpr: process_virtual_memory_bytes{job=~"kubernetes-apiserver"}  > 2000000000for: 2slabels:severity: warnningannotations:description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"value: "{{ $value }}"- alert: kubernetes-etcdexpr: process_virtual_memory_bytes{job=~"kubernetes-etcd"}  > 2000000000for: 2slabels:severity: warnningannotations:description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"value: "{{ $value }}"- alert: kube-dnsexpr: process_virtual_memory_bytes{k8s_app=~"kube-dns"}  > 2000000000for: 2slabels:severity: warnningannotations:description: "插件{{$labels.k8s_app}}({{$labels.instance}}): 使用虚拟内存超过2G"value: "{{ $value }}"- alert: HttpRequestsAvgexpr: sum(rate(rest_client_requests_total{job=~"kubernetes-kube-proxy|kubernetes-kubelet|kubernetes-schedule|kubernetes-control-manager|kubernetes-apiservers"}[1m]))  > 1000for: 2slabels:team: adminannotations:description: "组件{{$labels.job}}({{$labels.instance}}): TPS超过1000"value: "{{ $value }}"threshold: "1000"   - alert: Pod_restartsexpr: kube_pod_container_status_restarts_total{namespace=~"kube-system|default|monitor-sa"} > 0for: 2slabels:severity: warnningannotations:description: "在{{$labels.namespace}}名称空间下发现{{$labels.pod}}这个pod下的容器{{$labels.container}}被重启,这个监控指标是由{{$labels.instance}}采集的"value: "{{ $value }}"threshold: "0"- alert: Pod_waitingexpr: kube_pod_container_status_waiting_reason{namespace=~"kube-system|default"} == 1for: 2slabels:team: adminannotations:description: "空间{{$labels.namespace}}({{$labels.instance}}): 发现{{$labels.pod}}下的{{$labels.container}}启动异常等待中"value: "{{ $value }}"threshold: "1"   - alert: Pod_terminatedexpr: kube_pod_container_status_terminated_reason{namespace=~"kube-system|default|monitor-sa"} == 1for: 2slabels:team: adminannotations:description: "空间{{$labels.namespace}}({{$labels.instance}}): 发现{{$labels.pod}}下的{{$labels.container}}被删除"value: "{{ $value }}"threshold: "1"- alert: Etcd_leaderexpr: etcd_server_has_leader{job="kubernetes-etcd"} == 0for: 2slabels:team: adminannotations:description: "组件{{$labels.job}}({{$labels.instance}}): 当前没有leader"value: "{{ $value }}"threshold: "0"- alert: Etcd_leader_changesexpr: rate(etcd_server_leader_changes_seen_total{job="kubernetes-etcd"}[1m]) > 0for: 2slabels:team: adminannotations:description: "组件{{$labels.job}}({{$labels.instance}}): 当前leader已发生改变"value: "{{ $value }}"threshold: "0"- alert: Etcd_failedexpr: rate(etcd_server_proposals_failed_total{job="kubernetes-etcd"}[1m]) > 0for: 2slabels:team: adminannotations:description: "组件{{$labels.job}}({{$labels.instance}}): 服务失败"value: "{{ $value }}"threshold: "0"- alert: Etcd_db_total_sizeexpr: etcd_debugging_mvcc_db_total_size_in_bytes{job="kubernetes-etcd"} > 10000000000for: 2slabels:team: adminannotations:description: "组件{{$labels.job}}({{$labels.instance}}):db空间超过10G"value: "{{ $value }}"threshold: "10G"- alert: Endpoint_readyexpr: kube_endpoint_address_not_ready{namespace=~"kube-system|default"} == 1for: 2slabels:team: adminannotations:description: "空间{{$labels.namespace}}({{$labels.instance}}): 发现{{$labels.endpoint}}不可用"value: "{{ $value }}"threshold: "1"- name: 物理节点状态-监控告警rules:- alert: 物理节点cpu使用率expr: 100-avg(irate(node_cpu_seconds_total{mode="idle"}[5m])) by(instance)*100 > 90for: 2slabels:severity: ccriticalannotations:summary: "{{ $labels.instance }}cpu使用率过高"description: "{{ $labels.instance }}的cpu使用率超过90%,当前使用率[{{ $value }}],需要排查处理" - alert: 物理节点内存使用率expr: (node_memory_MemTotal_bytes - (node_memory_MemFree_bytes + node_memory_Buffers_bytes + node_memory_Cached_bytes)) / node_memory_MemTotal_bytes * 100 > 90for: 2slabels:severity: criticalannotations:summary: "{{ $labels.instance }}内存使用率过高"description: "{{ $labels.instance }}的内存使用率超过90%,当前使用率[{{ $value }}],需要排查处理"- alert: InstanceDownexpr: up == 0for: 2slabels:severity: criticalannotations:   summary: "{{ $labels.instance }}: 服务器宕机"description: "{{ $labels.instance }}: 服务器延时超过2分钟"- alert: 物理节点磁盘的IO性能expr: 100-(avg(irate(node_disk_io_time_seconds_total[1m])) by(instance)* 100) < 60for: 2slabels:severity: criticalannotations:summary: "{{$labels.mountpoint}} 流入磁盘IO使用率过高!"description: "{{$labels.mountpoint }} 流入磁盘IO大于60%(目前使用:{{$value}})"- alert: 入网流量带宽expr: ((sum(rate (node_network_receive_bytes_total{device!~'tap.*|veth.*|br.*|docker.*|virbr*|lo*'}[5m])) by (instance)) / 100) > 102400for: 2slabels:severity: criticalannotations:summary: "{{$labels.mountpoint}} 流入网络带宽过高!"description: "{{$labels.mountpoint }}流入网络带宽持续5分钟高于100M. RX带宽使用率{{$value}}"- alert: 出网流量带宽expr: ((sum(rate (node_network_transmit_bytes_total{device!~'tap.*|veth.*|br.*|docker.*|virbr*|lo*'}[5m])) by (instance)) / 100) > 102400for: 2slabels:severity: criticalannotations:summary: "{{$labels.mountpoint}} 流出网络带宽过高!"description: "{{$labels.mountpoint }}流出网络带宽持续5分钟高于100M. RX带宽使用率{{$value}}"- alert: TCP会话expr: node_netstat_Tcp_CurrEstab > 1000for: 2slabels:severity: criticalannotations:summary: "{{$labels.mountpoint}} TCP_ESTABLISHED过高!"description: "{{$labels.mountpoint }} TCP_ESTABLISHED大于1000%(目前使用:{{$value}}%)"- alert: 磁盘容量expr: 100-(node_filesystem_free_bytes{fstype=~"ext4|xfs"}/node_filesystem_size_bytes {fstype=~"ext4|xfs"}*100) > 80for: 2slabels:severity: criticalannotations:summary: "{{$labels.mountpoint}} 磁盘分区使用率过高!"description: "{{$labels.mountpoint }} 磁盘分区使用大于80%(目前使用:{{$value}}%)"
EOF

注意:

除了kube-proxy 默认在每个节点的 10249 端口上暴露其指标

其余的 kubernetes-schedulekubernetes-controller-managerkubernetes-etcd 这些组件Pod 的容器需要根据自己的 k8s 集群情况进行修改

kubectl apply -f prometheus-cfg.yamlkubectl get cm prometheus-config -n monitor-sa -o yaml

同样的还是需要检查 cm 文件中是否正确解析了 $1 $2

image-20241006191724613

3、重新生成 prometheus-deploy.yaml 文件

k8s-master1 节点操作

cat > prometheus-deploy.yaml << EOF
---
apiVersion: apps/v1
kind: Deployment
metadata:name: prometheus-servernamespace: monitor-salabels:app: prometheus
spec:replicas: 2selector:matchLabels:app: prometheuscomponent: server#matchExpressions:#- {key: app, operator: In, values: [prometheus]}#- {key: component, operator: In, values: [server]}template:metadata:labels:app: prometheuscomponent: serverannotations:prometheus.io/scrape: 'false'spec:affinity:podAntiAffinity:requiredDuringSchedulingIgnoredDuringExecution:- labelSelector:matchExpressions:- key: appoperator: Invalues:- prometheus- key: componentoperator: Invalues:- servertopologyKey: kubernetes.io/hostnameserviceAccountName: monitorcontainers:- name: prometheusimage: quay.io/prometheus/prometheus:latestimagePullPolicy: IfNotPresentcommand:- "/bin/prometheus"args:- "--config.file=/etc/prometheus/prometheus.yml"- "--storage.tsdb.path=/prometheus"- "--storage.tsdb.retention=24h"- "--web.enable-lifecycle"ports:- containerPort: 9090protocol: TCPvolumeMounts:- mountPath: /etc/prometheusname: prometheus-config- mountPath: /prometheus/name: prometheus-storage-volume- name: k8s-certsmountPath: /var/run/secrets/kubernetes.io/k8s-certs/etcd/- name: alertmanagerimage: prom/alertmanager:latestimagePullPolicy: IfNotPresentargs:- "--config.file=/etc/alertmanager/alertmanager.yml"- "--log.level=debug"ports:- containerPort: 9093protocol: TCPname: alertmanagervolumeMounts:- name: alertmanager-configmountPath: /etc/alertmanager- name: alertmanager-storagemountPath: /alertmanager- name: localtimemountPath: /etc/localtimevolumes:- name: prometheus-configconfigMap:name: prometheus-config- name: prometheus-storage-volumehostPath:path: /datatype: Directory- name: k8s-certssecret:secretName: etcd-certs- name: alertmanager-configconfigMap:name: alertmanager- name: alertmanager-storagehostPath:path: /data/alertmanagertype: DirectoryOrCreate- name: localtimehostPath:path: /usr/share/zoneinfo/Asia/Shanghai
EOF

3.1、创建一个名为 etcd-certs 的 Secret

kubectl -n monitor-sa create secret generic etcd-certs --from-file=/etc/kubernetes/pki/etcd/server.key  --from-file=/etc/kubernetes/pki/etcd/server.crt --from-file=/etc/kubernetes/pki/etcd/ca.crt

image-20241006194149381

3.2、应用 prometheus-deploy.yaml 文件

kubectl apply -f prometheus-deploy.yamlkubectl get pods -n monitor-sa

image-20241006211236948

4、重新生成并创建 alertmanager-svc.yaml 文件

cat >alertmanager-svc.yaml <<EOF
---
apiVersion: v1
kind: Service
metadata:labels:name: prometheuskubernetes.io/cluster-service: 'true'name: alertmanagernamespace: monitor-sa
spec:ports:- name: alertmanagernodePort: 30066port: 9093protocol: TCPtargetPort: 9093selector:app: prometheussessionAffinity: Nonetype: NodePort
EOF
kubectl apply -f alertmanager-svc.yamlkubectl get svc alertmanager -n monitor-sa

image-20241006211627124

5、访问 prometheus UI 界面

image-20241007102819517

5.1、【error】kube-controller-manager、etcd、kube-proxy、kube-scheduler 组件 connection refused

5.1.1、kube-proxy

默认情况下,该服务监听端口只提供给127.0.0.1,需修改为0.0.0.0

 kubectl edit cm/kube-proxy -n kube-system
  • 编辑文件,将文件修改允许0.0.0.0即可,保存
    metricsBindAddress: 0.0.0.0:10249

image-20241007121231980

  • 删除重建 kube-proxy 的 pod
kubectl delete pod -l k8s-app=kube-proxy -n kube-system

image-20241007121419636

  • 效果

image-20241007121111763

5.1.2、kube-controller-manager

事先说明:到这一步我试过网上很多方法都没有成功获取到数据,所以我重新创建了 sa 慎用,仅供参考

  • 修改 kube-controller-manager 的 yaml 文件

默认监听本地修改为 0.0.0.0

- --bind-address=127.0.0.1
# 修改为
- --bind-address=0.0.0.0
  • 创建ServiceAccount

创建一个新的ServiceAccount,用于Prometheus访问 kube-controller-manager

cat > prom-sa << EOF
apiVersion: v1
kind: ServiceAccount
metadata:name: prometheus-sanamespace: monitor-sa
EOF
  • 创建ClusterRole

创建一个ClusterRole,定义Prometheus所需的权限。

cat > porm-role << EOF
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:name: prometheus-role
rules:
- nonResourceURLs:- "/metrics"verbs:- get
EOF
  • 创建ClusterRoleBinding

将ServiceAccount绑定到ClusterRole。

cat > prom-bind.yaml << EOF
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:name: prometheus-binding
subjects:
- kind: ServiceAccountname: prometheus-sanamespace: monitor-sa
roleRef:kind: ClusterRolename: prometheus-roleapiGroup: rbac.authorization.k8s.io
EOF
  • 获取ServiceAccount的Token

获取ServiceAccount的Token,以便在Prometheus配置中使用。

TOKEN=$(kubectl get secret $(kubectl get sa prometheus-sa -n monitor-sa -o json | jq -r '.secrets[].name') -n monitor-sa -o json | jq -r '.data.token' | base64 --decode)
  • 修改Prometheus配置文件(cm)
- job_name: 'kubernetes-controller-manager'scheme: httpstls_config:insecure_skip_verify: true  # 禁用证书验证authorization:credentials: eyJhbGciOiJSUzI1NiIsImtpZCI6IkFEWVNqaWlueWVDMzBUcTZvQk9MRkpxQ0diLWRGWkNoaWlpZkgwR21NcEkifQ.eyJpc3MiOiJrdWJlcm5ldGVzL3NlcnZpY2VhY2NvdW50Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9uYW1lc3BhY2UiOiJtb25pdG9yLXNhIiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9zZWNyZXQubmFtZSI6InByb21ldGhldXMtc2EtdG9rZW4tbnQ5bm4iLCJrdWJlcm5ldGVzLmlvL3NlcnZpY2VhY2NvdW50L3NlcnZpY2UtYWNjb3VudC5uYW1lIjoicHJvbWV0aGV1cy1zYSIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2VydmljZS1hY2NvdW50LnVpZCI6IjQ4YTA5NDExLTAwMmYtNDE0Ni05YzY4LTBiNmVjOWYzYWZlZCIsInN1YiI6InN5c3RlbTpzZXJ2aWNlYWNjb3VudDptb25pdG9yLXNhOnByb21ldGhldXMtc2EifQ.DNgCjTVxsrGDltvQZG-x7qPQrh369SO_e0faGrrhjgkBLS4q2sh85wkaBNNZcIjxZcVk7ZU9gQmQkM3AIgGIcIURpQGDMgVVI_xF1JV8iQWe-nL1yHnQAXDjyMAd1826wVvMH8LSKqdKfPVaMHN8t0LScX5yHonSJUqoevxi7Mm7tiUd33IlMQ6xH6M8Tu8bsg-fOVmL6nnGpC1tPgaZy8M_GA_Kh9j8SwHXi4Yd9r75eOSa3J6N4KF6n-EPKxnGmXDooA60G94YptsDFCQMi1t4TLAFR1FKraycWHwPbIwviUZTvA1WXbkiHnh0R6q-y0hHJVbAi_ZXagVXKZFBaw  # 替换为实际的Token值scrape_interval: 5sstatic_configs:- targets: ['192.168.112.10:10257']
  • 重启Prometheus

更新配置后,重启Prometheus以应用新的配置。

kubectl rollout restart deployment/prometheus-server -n monitor-sa
  • 效果

image-20241007173313086

5.1.3、kube-schedule

和 kube-controller-manager 操作一致

  • 效果

image-20241007174612964

5.1.4、etcd
  • 修改创建 etcd 的 yaml 文件

添加 master 节点 ip + etcd port

vim /etc/kubernetes/manifests/etcd.yaml- --listen-metrics-urls=http://127.0.0.1:2381,http://192.168.112.10:2381

image-20241007175408503

  • 修改 prometheus.yaml 文件
改为 http

image-20241007175613604

  • 效果

image-20241007175150365

6、点击Alerts,查看

image-20241007175925889

7、把controller-manager的cpu使用率大于90%展开

FIRING表示prometheus已经将告警发给alertmanager

在Alertmanager 中可以看到有 alert。

image-20241007180133147

8、登录 alertmanager UI

<master-ip>:svc-alertmanager-port192.168.112.10:30066

image-20241007180525364

image-20241007180341995

9、登录 QQ 邮箱查看告警信息

image-20241007180724123

四、配置 Alertmanager 报警 – 发送告警到钉钉

1、手机端拉群

因为 PC 端不好操作

IMG_20241007_185306

2、创建自定义机器人

自定义机器人安全设置 - 钉钉开放平台 (dingtalk.com)

群设置
image-20241007185813640
机器人
image-20241007190002110
添加机器人
image-20241007190053622
自定义
image-20241007190125011
添加
image-20241007190214813
机器人名字、安全设置
image-20241007190915612
保管好 Webhook
image-20241007191221897

3、获取钉钉的 Webhook 插件

master 节点操作

git clone git@github.com:misakivv/prometheus-webhook-dingtalk.gitcd prometheus-webhook-dingtalktar zxvf prometheus-webhook-dingtalk-0.3.0.linux-amd64.tar.gzcd prometheus-webhook-dingtalk-0.3.0.linux-amd64

image-20241007192418023

4、启动钉钉告警插件

nohup ./prometheus-webhook-dingtalk --web.listen-address="0.0.0.0:8060" --ding.profile="cluster1=https://oapi.dingtalk.com/robot/send?access_token=feb3df2c6a987c8c1466c16eb90f4c2d3817c481aacf15cecc46f588f2716f25" &

image-20241007202305558

5、对 alertmanager-cm.yaml 文件做备份

cp alertmanager-cm.yaml alertmanager-cm.yaml.bak

6、重新生成新的 alertmanager-cm.yaml 文件

cat >alertmanager-cm.yaml <<EOF
kind: ConfigMap
apiVersion: v1
metadata:name: alertmanagernamespace: monitor-sa
data:alertmanager.yml: |-global:resolve_timeout: 1msmtp_smarthost: 'smtp.qq.com:465'smtp_from: '2830909671@qq.com'smtp_auth_username: '2830909671@qq.com'smtp_auth_password: 'ajjgpgwwfkpcdgih'smtp_require_tls: falseroute:group_by: [alertname]group_wait: 10sgroup_interval: 10srepeat_interval: 10mreceiver: cluster1receivers:- name: cluster1webhook_configs:- url: 'http://192.168.112.10:8060/dingtalk/cluster1/send'send_resolved: true
EOF

7、重建资源以生效

kubectl delete cm alertmanager -n monitor-sakubectl apply -f alertmanager-cm.yamlkubectl delete -f prometheus-cfg.yamlkubectl apply -f prometheus-cfg.yamlkubectl delete -f prometheus-deploy.yamlkubectl apply -f prometheus-deploy.yaml

image-20241007203234415

8、效果

image-20241007203102485
image-20241007203427726
image-20241007203454338
image-20241007203613020
image-20241007203905132
image-20241007203933639

暂时先写到这里,其实 alertmanager 还有静默、去重、抑制等功能,告警也可以模板化,下一篇再共同学习

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/444170.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

element-ui的树形结构样式调整,添加线条和边框样式

element-ui的树形结构样式调整&#xff0c;添加线条和边框样式 先看图效果&#xff1a; <template><div class"temperature_monitoring"><div class"temperature_monitoring_left"><div class"tree-container"><e…

鸿蒙NEXT开发-动画(基于最新api12稳定版)

注意&#xff1a;博主有个鸿蒙专栏&#xff0c;里面从上到下有关于鸿蒙next的教学文档&#xff0c;大家感兴趣可以学习下 如果大家觉得博主文章写的好的话&#xff0c;可以点下关注&#xff0c;博主会一直更新鸿蒙next相关知识 专栏地址: https://blog.csdn.net/qq_56760790/…

PostgreSQL数据库定期清理归档(pg_wal)日志

一、配置归档模式 在postgresql.conf文件中设置archive_mode on来启用归档功能。 二、设置归档命令 同样在postgresql.conf中&#xff0c;设置archive_command参数&#xff0c;指定一个shell命令来处理归档日志&#xff0c;例如&#xff1a; archive_command cp %p /home/…

若依项目搭建(黑马经验)

欢迎你搜索和了解到若依&#xff0c;这个项目是从黑马课程的一个实践&#xff0c;更多的项目经历和平台搭建期待着我们的共同学习&#xff01; 关于若依 若依是一套全部开源的快速开发平台&#xff0c;毫无保留给个人及企业免费使用。 前端采用Vue、Element UI。后端采用Sprin…

无人机之巡航控制篇

一、巡航控制的基本原理 无人机巡航控制的基本原理是通过传感器检测无人机的飞行状态和环境信息&#xff0c;并将其反馈给控制器。控制器根据反馈信息和任务需求&#xff0c;计算出无人机的控制指令&#xff0c;并将其发送给执行机构。执行机构根据控制器的控制指令&#xff0c…

linux线程 | 线程的概念

前言:本篇讲述linux里面线程的相关概念。 线程在我们的教材中的定义通常是这样的——线程是进程的一个执行分支。 线程的执行粒度&#xff0c; 要比进程要细。 我们在读完这句话后其实并不能很好的理解什么是线程。 所以&#xff0c; 本节内容博主将会带友友们理解什么是线程&a…

从加载到对话:使用 Llama-cpp-python 本地运行量化 LLM 大模型(GGUF)

&#xff08;无需显卡&#xff09;使用 Llama-cpp-python 在本地加载具有 70 亿参数的 LLM 大语言模型&#xff0c;通过这篇文章你将学会用代码创建属于自己的 GPT。 建议阅读完 19a 的「前言」和「模型下载」部分后再进行本文的阅读。 代码文件下载 - Llama-cpp-python 文章目…

字节跳动青训营开始报名了!

关于青训营&#xff1a; 青训营是字节跳动技术团队发起的技术系列培训 &人才选拔项目;面向高校在校生&#xff0c;旨在培养优秀且具有职业竞争力的开发工程师。 本次技术训练营由掘金联合豆包MarsCode 团队主办课程包含前端、后端和 A 方向&#xff0c;在这个飞速发…

彩族相机内存卡恢复多种攻略:告别数据丢失

在数字时代&#xff0c;相机内存卡作为我们存储珍贵照片和视频的重要媒介&#xff0c;其数据安全性显得尤为重要。然而&#xff0c;意外删除、错误格式化、存储卡损坏等情况时有发生&#xff0c;导致数据丢失&#xff0c;给用户带来不小的困扰。本文将详细介绍彩族相机内存卡数…

服装生产管理的数字化转型:SpringBoot框架

4 系统设计 4.1 系统结构设计 在结构设计过程中&#xff0c;首先对系统进行需求分析&#xff0c;然后进行系统初步设计&#xff0c;将系统功能模块细化&#xff0c;具体分析每一个功能模块具体应该首先哪些功能&#xff0c;最后将各个模块进行整合&#xff0c;实现系统结构的…

R语言的Meta分析【全流程、不确定性分析】方法与Meta机器学习技术应用

Meta分析是针对某一科研问题&#xff0c;根据明确的搜索策略、选择筛选文献标准、采用严格的评价方法&#xff0c;对来源不同的研究成果进行收集、合并及定量统计分析的方法&#xff0c;最早出现于“循证医学”&#xff0c;现已广泛应用于农林生态&#xff0c;资源环境等方面。…

RelationGraph实现工单进度图——js技能提升

直接上图&#xff1a; 从上图中可以看到整个工单的进度是从【开始】指向【PCB判责】【完善客诉】【PCBA列表】&#xff0c;同时【完善客诉】又可以同时指向【PCB判责】【PCBA列表】&#xff0c;后续各自指向自己的进度。 直接上代码&#xff1a; 1.安装 1.1 Npm 方式 npm …

PostgreSQL学习笔记七:常规SQL操作

PostgreSQL 支持标准的 SQL 语句&#xff0c;同时也扩展了一些特有的功能。以下是一些常规的 SQL 语句示例&#xff0c;这些示例涵盖了数据定义、数据操作和数据查询的基本操作&#xff1a; 数据定义语言 (DDL 创建数据库&#xff1a; CREATE DATABASE mydatabase;创建表&#…

安卓使用.9图实现阴影效果box-shadow: 0 2px 6px 1px rgba(0,0,0,0.08);

1.安卓实现阴影效果有很多种&#xff0c;一般UX设计会给以H5参数box-shadow: 0 2px 6px 1px rgba(0,0,0,0.08);这种方式提供背景阴影效果&#xff0c;这里记录一下实现过程 2.界面xml源码 <?xml version"1.0" encoding"utf-8"?> <layout xmlns…

鸿蒙架构-系统架构师(七十八)

1信息加密是保证系统机密性的常用手段。使用哈希校验是保证数据完整性的常用方法。可用性保证合法用户对资源的正常访问&#xff0c;不会被不正当的拒绝。&#xff08;&#xff09;就是破坏系统的可用性。 A 跨站脚本攻击XSS B 拒绝服务攻击DoS C 跨站请求伪造攻击CSRF D 缓…

MQTT vs HTTP:谁更适合物联网?

前言 随着物联网&#xff08;IoT&#xff09;技术的飞速发展中&#xff0c;其应用规模和使用场景正在持续扩大&#xff0c;但它关键的流程仍然是围绕数据传输来进行的&#xff0c;因此设备通信协议选择至关重要。 作为两种主要的通信协议&#xff0c;MQTT 协议和 HTTP 协议各…

网络资源模板--Android Studio 实现简易计算器App

目录 一、项目演示 二、项目测试环境 三、项目详情 四、完整的项目源码 一、项目演示 网络资源模板--基于Android studio 实现的简易计算器 二、项目测试环境 三、项目详情 动态绑定按钮&#xff1a; 使用循环遍历 buttons 数组&#xff0c;根据动态生成的按钮 ID (btn_0, …

【环境搭建】MAC M1安装ElasticSearch

STEP1 官网下载ES Download Elasticsearch | Elastic&#xff0c;下载mac m1对应版本的es STEP2 进入bin文件夹&#xff0c;执行./elasticSearch 浏览器输入 127.0.0.1:9200 STEP 3 下载对应Kibana版本&#xff0c;Download Kibana Free | Get Started Now | Elastic 出现报错…

51c自动驾驶~合集3

我自己的原文哦~ https://blog.51cto.com/whaosoft/11506489 #UniAD UniAD是围绕查询设计的&#xff0c;它的感知、预测、规划任务都使用交叉注意力来将前置任务的查询转换为当前任务的查询。每个任务的查询以及这些查询的组合&#xff0c;都用长度为256的向量表征。最初的表…

【Unity】背景图片随着背景里面内容大小而变化

今天制作项目里面的设置界面和暂停界面时&#xff0c;发现两个界面有很多重复部分&#xff0c;所以直接做一个界面就行了&#xff0c;但是两个界面的背景大小会有变化&#xff0c;图片在下面 这个是游戏暂停界面的&#xff0c;设置界面和这个界面有很多重复地方&#xff0c;仅仅…