使用Pytorch+Numpy+Matplotlib实现手写字体分类和图像显示

文章目录

  • 1.引用
  • 2.内置图片数据集加载
  • 3.处理为batch类型
  • 4.设置运行设备
  • 5.查看数据
  • 6.绘图查看数据图片
    • (1)不显示图片标签
    • (2)打印图片标签
    • (3)图片显示标签
  • 7.定义卷积函数
  • 8.卷积实例化、损失函数、优化器
  • 9.训练和测试损失、正确率
    • (1)训练
    • (2)测试
    • (3)循环
    • (4)损失和正确率曲线
    • (5)输出数据到表格
  • 10.额外添加
    • (1)添加dropout减少过拟合
      • ①未添加dropout层
      • ②添加dropout层
    • (2)循环同时输出时间
    • (3)每个类别分类正确率输出
      • ①输出到控制台
      • ②输出到表格
    • (4)模型保存/加载
    • (5)保存后的网络模型可视化
    • (6)训练过程可视化
    • (7)显示彩色图片
      • ①灰色图片
      • ②彩色图片
    • (8)每次卷积后特征图显示
    • (9)运行过程中忽视警告

1.引用

   torchvision提供了一些常用的数据集、模型、转换函数等

import torchvision
from torchvision import transforms
import numpy as np
import matplotlib.pyplot as plt

2.内置图片数据集加载

  torch的内置图片数据集均在datasets模块下,包含Catletch、CelebA、CIFAR、Cityscapes、COCO、Fashion-MNIST、ImageNet、MNIST等。
  MNIST数据集是0-9手写数字数据集。

  train=True表示是训练数据
  torchvision.transforms包含了转换函数
  这里用到了ToTensor类,该类的主要作用有以下3点:
  ①将输入转换成张量
  ②读取图片的格式规范为(channel,heigth,width)
  ③将图片像素的取值范围归一化0-1

train_ds=torchvision.datasets.MNIST('data/',train=True,transform=transforms.ToTensor(),download=True)
test_ds=torchvision.datasets.MNIST('data/',train=False,transform=transforms.ToTensor(),download=True)

3.处理为batch类型

  DataLoader有以下4个目的:
  ①使用shuffle参数对数据集做乱序的操作(随机打乱)
  ②将数据采样为小批次,可用batch_size参数指定批次大小(小批次)
  ③可以充分利用多个子进程加速数据预处理(多线程)
  ④可通过collate_fn参数传递批次数据中的处理函数,实现对批次数据进行转换处理(转换处理)

train_dl=torch.utils.data.DataLoader(train_ds,batch_size=64,shuffle=True)
test_dl=torch.utils.data.DataLoader(test_ds,batch_size=64)

  上述两行代码创建了DataLoader类型的train_dl和test_dl
  DataLoader是可迭代对象,next方法返回一个批次的图像imgs和对应一个批次的标签labels

4.设置运行设备

  机器学习或者深度学习需要选择程序运行的设备是CPU还是GPU,GPU就是通常所说的需要有显卡。

device='cuda' if torch.cuda.is_available() else 'cpu'
print('use {} device'.format(device))

5.查看数据

imgs,labels=next(iter(train_dl))
print(imgs.shape)
print(labels.shape)
结果:
torch.Size([64, 1, 28, 28])
torch.Size([64])

6.绘图查看数据图片

  imgs[:10]查看前10条数据
  np.squeeze从数组的形状中删除维度为 1 的维度。
  np.unsqueeze从数组的形状中添加维度为 1 的维度。
  注:只有数组长度在该维度上为 1,那么该维度才可以被删除。如果不是1,那么删除的话会报错
  报错信息:cannot select an axis to squeeze out which has size not equal to one

(1)不显示图片标签

plt.figure(figsize=(10,1))
for i,img in enumerate(imgs[:10]):npimg=img.numpy()npimg=np.squeeze(npimg)#形状由(1,28,28)转换为(28,28)plt.subplot(1,10,i+1)plt.imshow(npimg)      #在子图中绘制单张图片plt.axis('off')        #关闭显示子图坐标    
print(labels[:10])
plt.show()

(2)打印图片标签

classes = ('0', '1', '2', '3', '4', '5', '6', '7', '8', '9')
class_label_str=''img_label_list=list(zip(imgs,labels))
for i,(img,label) in enumerate(img_label_list):nimg=np.array(img)nimg=np.squeeze(nimg)plt.subplot(8,8,i+1)plt.title(str(label.item()))plt.imshow(nimg)plt.axis('off')'''按照图片显示格式打印所有标签:i!=0实现按行打印的同时第一行前面无空行,按每行8列打印'''if i!=0 and i%8==0:class_label_str +='\n'class_label_str += classes[label.item()]+'\t'
print(class_label_str)
plt.show()

(3)图片显示标签

  我这里以'airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'这些类别示例,作用于手写字体图像分类时,要更改成0-9

classes = ('airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')img_label_list=list(zip(imgs,labels))
for i,(img,label) in enumerate(img_label_list):nimg=img.transpose(0, 2)nimg=nimg.numpy()plt.subplot(5,5,i+1)plt.title(classes[label.item()])plt.imshow(nimg)plt.axis('off')
plt.show()

7.定义卷积函数

  定义卷积函数才是算法模型的真正开始,卷积层一般是必不可少的,是机器学习和深度学习的灵魂与基石所在。

class net(nn.Module):def __init__(self):super().__init__()self.conv1=nn.Conv2d(1,6,5)self.conv2=nn.Conv2d(6,16,5)self.linear1 = nn.Linear(16*4*4,20)self.linear2 = nn.Linear(20,10)def forward(self,input):x=torch.max_pool2d(torch.relu(self.conv1(input)),2)x=torch.max_pool2d(torch.relu(self.conv2(x)),2)x=x.view(x.size(0),-1)x=torch.relu(self.linear1(x))x=self.linear2(x)return x

  算法模型流程示意:

8.卷积实例化、损失函数、优化器

model=net().to(device)
loss_f=nn.CrossEntropyLoss()
opti=optim.Adam(model.parameters(), lr=0.005)

9.训练和测试损失、正确率

(1)训练

def train(dataloader,model,loss_f,opt):model.train()                  #模型为训练模式num_batches=len(dataloader)    #总批次数size=len(dataloader.dataset)   #样本总数(所有的批次里所有的数据点)loss_zhi=0                     #所有批次的损失之和correct=0                      #预测正确的样本总数for x,y in dataloader:x,y=x.to(device),y.to(device)pred=model(x)loss=loss_f(pred,y)        '''梯度清零、反向传播、梯度更新是专属'''opt.zero_grad()loss.backward()opt.step()with torch.no_grad():loss_zhi+=loss.item()correct+=(pred.argmax(1)==y).type(torch.float).sum().item()loss_zhi/=num_batches  #loss_zhi是所有批次的损失之和,所以计算全部样本的平均损失需要除以总批次数correct/=size          #correct是预测正确的样本总数,若计算每个批次总体正确率,需除以样本总数量return loss_zhi,correct

  注:当前代码里的pred.argmax(1)会返会类似Tensor([4,6,...,0])Tensor,而y也是类似形状的tensor,因此二者可以用==比较

(2)测试

def test(dataloader, model):model.eval()                   #模型为测试模式num_batches=len(dataloader)    #总批次数size=len(dataloader.dataset)   #样本总数(所有的批次里所有的数据点)loss_zhi=0                     #所有批次的损失之和correct=0                      #预测正确的样本总数for x, y in dataloader:x,y=x.to(device),y.to(device)pred = model(x)loss = loss_f(pred, y)with torch.no_grad():loss_zhi += loss.item()correct += (pred.argmax(1) == y).type(torch.float).sum().item()loss_zhi /= num_batchescorrect /= sizereturn loss_zhi, correct

(3)循环

epochs = 200
train_loss = []
train_acc = []
test_loss = []
test_acc = []
for epoch in range(epochs):epoch_train_loss,epoch_train_acc=train(train_dl,model,loss_f,opt)epoch_test_loss,epoch_test_acc=test(test_dl,model)train_loss.append(epoch_train_loss)train_acc.append(epoch_train_acc)test_loss.append(epoch_test_loss)test_acc.append(epoch_test_acc)tishi='epoch:{},train_loss:{:.4f},train_acc:{:.2f}%,test_loss:{:.4f},test_acc:{:.2f}%'print(tishi.format(epoch,train_loss[-1],train_acc[-1]*100,test_loss[-1],test_acc[-1]*100))
print('batch over!')

(4)损失和正确率曲线

plt.figure(figsize=(10,4))
plt.subplot(121)
#打印损失
plt.plot(range(1,epochs+1),train_loss,label='train_loss')
plt.plot(range(1,epochs+1),test_loss,label='test_loss')
plt.title('train+test:loss')
plt.xlabel('epoch')
plt.legend(loc='upper right')
plt.subplot(122)
#打印正确率
plt.plot(range(1,epochs+1),train_acc,label='train_acc')
plt.plot(range(1,epochs+1),test_acc,label='test_acc')
plt.title('train+test:acc')
plt.xlabel('epoch')
plt.legend(loc='lower right')
plt.show()
plt.savefig('D:/loss+acc.png')

(5)输出数据到表格

table={'train_loss':train_loss,'train_acc':train_acc,'test_loss':test_loss,'test_acc':test_acc}
data_shuju=pd.DataFrame(table,index=list(range(1,epochs+1)))
data_shuju.to_excel('D:/loss+acc.xlsx')

10.额外添加

(1)添加dropout减少过拟合

  卷积后添加Dropout层较少使用,效果也不是很明显,这是因为相邻元素之间有相关性,随机地丢弃卷积输出特征像素点,抑制过拟合的效果有限。
  Dropout的第一个参数是输入的tensor,第二个参数p代表的是丢弃的神经元的比例,默认为0.5

①未添加dropout层

class net(nn.Module):def __init__(self):super().__init__()self.conv1=nn.Conv2d(1,6,5)self.conv2=nn.Conv2d(6,16,5)self.linear1 = nn.Linear(16*4*4,20)self.linear2 = nn.Linear(20,10)def forward(self,input):x=torch.max_pool2d(torch.relu(self.conv1(input)),2)x=torch.max_pool2d(torch.relu(self.conv2(x)),2)x=x.view(x.size(0),-1)x=torch.relu(self.linear1(x))x=self.linear2(x)return x

  dropoutloss+acc图像:

②添加dropout层

class net(nn.Module):def __init__(self):super().__init__()self.conv1=nn.Conv2d(1,6,5)self.conv2=nn.Conv2d(6,16,5)self.linear1 = nn.Linear(16*4*4,20)self.linear2 = nn.Linear(20,10)def forward(self,input):x=torch.max_pool2d(torch.relu(self.conv1(input)),2)x=torch.max_pool2d(torch.relu(self.conv2(x)),2)x=x.view(x.size(0),-1)x=torch.dropout(x, p=0.5, train=self.training)x=torch.relu(self.linear1(x))x=torch.dropout(x, p=0.5, train=self.training)x=self.linear2(x)return x

  dropoutloss+acc图像:
在这里插入图片描述

(2)循环同时输出时间

import timeepochs=1
train_loss=[]
train_acc=[]
test_loss=[]
test_acc=[]
epoch_time=[]
start=time.time()
for epoch in range(epochs):epoch_train_loss,epoch_train_acc=train(train_dl,model,loss_f,opt)epoch_test_loss, epoch_test_acc = test(test_dl, model)train_loss.append(epoch_train_loss)train_acc.append(epoch_train_acc)test_loss.append(epoch_test_loss)test_acc.append(epoch_test_acc)epoch_time.append(time.time()-start)tishi='epoch:{},train_loss:{:.4f},train_acc:{:.2f}%,test_loss:{:.4f},test_acc:{:.2f}%,time:{:.2f}'print(tishi.format(epoch,train_loss[-1],train_acc[-1]*100,test_loss[-1],test_acc[-1]*100,epoch_time[-1]))
print('epoch over!')table={'train_loss':train_loss,'train_acc':train_acc,'test_loss':test_loss,'test_acc':test_acc,'epoch_time':epoch_time}
data_shuju=pd.DataFrame(table,index=list(range(1,epochs+1)))
data_shuju.to_excel('loss+acc.xlsx')
print('save over!')

(3)每个类别分类正确率输出

①输出到控制台

  注:需要在网络循环loss+acc之后使用,若是提前使用正确率只有个位数

class_correct = list(0 for i in range(10))  #每个类别预测正确的数量
class_total   = list(0 for i in range(10))  #每个类别的总数量
with torch.no_grad():# 从测试数据中取出数据for x, y in test_dl: x, y= x.to(device), y.to(device)outputs = model(x)_, predicted = torch.max(outputs, 1)# 预测正确的返回True,预测错误的返回False;squeeze将数据转换为一维数据c = (predicted == y).squeeze()for i in range(10):label = y[i]  # 提取标签class_correct[label] += c[i].item()  # 预测正确个数class_total[label] += 1  # 总数
for i in range(10):print('{}的准确率:{:.2f}%'.format(classes[i], 100 * class_correct[i] / class_total[i]))
结果:
0的准确率:98.03%
1的准确率:100.00%
2的准确率:100.00%
3的准确率:98.08%
4的准确率:97.74%
5的准确率:97.62%
6的准确率:98.44%
7的准确率:99.39%
8的准确率:98.60%
9的准确率:97.60%

②输出到表格

class_test_dic={}
for i in range(10):print('{:.10s}的准确率:{:.2f}%'.format(classes[i], 100 * class_correct[i] / class_total[i]))class_test_dic['{:.12s}'.format(classes[i])]=[100 * class_correct[i] / class_total[i],'{:.2f}%'.format(100 * class_correct[i] / class_total[i])]
class_dic = pd.DataFrame(class_test_dic,index=list(range(2)))
class_dic.to_excel('model5s_class_test_dic.xlsx')
print('save over!')

(4)模型保存/加载

torch.save(model,"K:\\classifier3.pt")    #保存完整模型
load_model = torch.load("K:\\classifier3.pt")

  测试图片:

path='./MNIST_data.pth'
test_model = net()
test_model.load_state_dict(torch.load(path))test_image = Image.open(file)  # 加载要测试的图片test_transform = torchvision.transforms.Compose([torchvision.transforms.Resize((28, 28)),torchvision.transforms.Grayscale(),  # 训练的是灰色图片需要加上,不然通道数不对torchvision.transforms.ToTensor(),torchvision.transforms.Normalize((0.1307,), (0.3081,))
])test_image = test_transform(test_image)
test_image = test_image.unsqueeze(0)  # 添加批次维度output = test_model(test_image)  # 输入图片到模型中进行推理
_, predicted = torch.max(output, 1)  # 获取预测结果
self.label_result.setText(str(predicted.item()))

(5)保存后的网络模型可视化

  浏览器输入链接:netron

  点击按钮,打开保存的.pt文件,就可以显示网络机构
  例:

(6)训练过程可视化

def visualize(train_loss,val_loss,val_acc):train_loss = np.array(train_loss)val_loss = np.array(val_loss)val_acc = np.array(val_acc)plt.grid(True)plt.xlabel("epoch")plt.ylabel("value")plt.title("train_loss and valid_acc")plt.plot(np.arange(len(val_acc)),val_acc, label=r"valid_acc",c="g")plt.plot(np.arange(len(train_loss)),train_loss,label=r"train_loss",c="r")plt.legend()plt.savefig("K:\\a.png")visualize(train_loss_list,valid_loss_list,valid_accuracy_list)

(7)显示彩色图片

  问题1:TypeError: Invalid shape (3, 224, 224) for image data

①灰色图片

img_label_list=list(zip(img,label))
for i,(img,label) in enumerate(img_label_list):nimg=np.array(img)nimg=np.squeeze(nimg)plt.subplot(8,8,i+1)plt.title(str(label.item()))plt.imshow(nimg)plt.axis('off')
plt.show()

②彩色图片

img_label_list=list(zip(img,label))
for i,(img,label) in enumerate(img_label_list):nimg=img.transpose(0, 2)  彩色图像是3*n*n需要先将3移到最后!nimg=nimg.numpy()plt.subplot(5,5,i+1)plt.title(str(label.item()))plt.imshow(nimg)plt.axis('off')
plt.show()

  问题2:Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
  matplotlib.pyplot.imshow()函数在处理灰度图像时,自动将其值做归一化处理而在处理彩色图像时则不会,而是将浮点值变换至[0,1],整数值变换到[0, 255]范围

(8)每次卷积后特征图显示

  需要先修改transform

transform=transforms.Compose([transforms.ToTensor(),   #转换成张量transforms.Normalize(mean=[0.485,0.456,0.406],std=[0.229,0.224,0.225])])
#保存数据集一张图像
imgs,labels=next(iter(train_dl))
img_label_list=list(zip(imgs,labels))
for i,(img,label) in enumerate(img_label_list):nimg=img.transpose(0, 2)nimg=nimg.numpy()plt.imshow(nimg)plt.axis('off')plt.savefig('1.png')if i==0:break# 传入图片
from PIL import Imageimage=Image.open(str(r'1.png')).convert('RGB')
image=transform(image)
print('\n输入图尺寸:{}'.format(image.shape))image=image.unsqueeze(0)
image=image.to(device)# 计算卷积个数
model_weights=[] #卷积层参数
conv_layers=[]   #卷积层本身
model_children=list(model.children())
counter=0        #卷积层个数
for i in range(len(model_children)):if type(model_children[i])==nn.Conv2d:counter+=1model_weights.append(model_children[i].weight)conv_layers.append(model_children[i])elif type(model_children[i])==nn.Sequential:for j in range(len(model_children[i])):for child in model_children[i][j].children():if type(child)==nn.Conv2d:counter+=1model_weights.append(child.weight)conv_layer.append(child)outputs=[]
names=[]
for layer in conv_layers[0:]:image=layer(image)outputs.append(image)names.append(str(layer))
print('特征图尺寸:{}'.format(outputs[1].shape))#具体绘制特征图
processed=[]
for feature_map in outputs:feature_map=feature_map.squeeze(0)gray_scale=torch.sum(feature_map,0)gray_scale=gray_scale/feature_map.shape[0]processed.append(gray_scale.data.cpu().numpy())
fig=plt.figure()for i in range(len(processed)):a=fig.add_subplot(5,4,i+1)imgplot=plt.imshow(processed[i])a.axis('off')a.set_title(names[i].split('(')[0],fontsize=10)
plt.savefig('feature_map.png',bbox_inches='tight')
print('over!')

(9)运行过程中忽视警告

import warnings
warnings.filterwarnings("ignore")

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/444424.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

高效使用AI,一文掌握提示词的编写原则

ChatGPT问世以后就引爆全网热议,它除了能够聊天,还可以根据所提出的要求进行文字翻译、文案撰写、代码撰写等工作。在 《探秘爆火的ChatGPT:大语言模型是个啥?它到底咋工作的?》 一文中,我已经详细介绍了Ch…

仿IOS桌面悬浮球(支持拖拽、自动吸附、自动改变透明度与点击、兼容PC端与移动端)

使用 pointerdown/pointermove/pointerup 实现仿IOS桌面悬浮球效果,支持拖拽、指定拖拽选对容器,指定拖拽安全区、自动吸附、自动改变透明度与点击,兼容PC端与移动端。 效果展示 https://code.juejin.cn/pen/7423757568268304421 代码实现 …

掌握RocketMQ4.X消息中间件(一)-RocketMQ基本概念与系统架构

1 MQ介绍 MQ(Message Quene) : 翻译为 消息队列,别名为 消息中间件,通过典型的 生产者和消费者模型,生产者不断向消息队列中生产消息,消费者不断的从队列中获取消息。因为消息的生产和消费都是异步的,而且只关心消息的发送和接收&#xff0c…

<Project-8.1 pdf2tx-MM> Python Flask 用浏览器翻译PDF内容 2个翻译引擎 繁简中文结果 从P8更改

更新 Project Name:pdf2tx (P6) Date: 5oct.24 Function: 在浏览器中翻译PDF文件 Code:https://blog.csdn.net/davenian/article/details/142723144 升级 Project Name: pdf2tx-mm (P8) 7oct.24 加入多线程,分页OCR识别,提高性能与速度 使…

Qt+VS2019+大恒相机相机回调方式总结

一、前言 大恒驱动安装完成后,在安装目录有SDK调用文档,里面有更详细的调用介绍,此文档对近期做的Demo做一个回顾性总结。 二、调用流程概述 三、针对性内容介绍: 1. 在执行相机操作之前,需要先执行此代码&#xff1…

强大的PDF到Word转换工具

Solid Converter:强大的PDF到Word转换工具推荐 在日常工作和学习中,PDF是最常用的文件格式之一。然而,编辑PDF文档并不总是那么方便,尤其是当你需要将PDF文件转换为Word文档时。Solid Converter 是一款强大的工具,专为…

前端面试:项目细节重难点问题分享(18)

更多详情:爱米的前端小笔记(csdn~xitujuejin~zhiHu~Baidu~小红shu)同步更新,等你来看!都是利用下班时间整理的,整理不易,大家多多👍💛➕🤔哦!你们…

Java基础(下)

泛型 Java 泛型&#xff08;Generics&#xff09; 是 JDK 5 中引入的一个新特性。使用泛型参数&#xff0c;可以增强代码的可读性以及稳定性。 编译器可以对泛型参数进行检测&#xff0c;并且通过泛型参数可以指定传入的对象类型 ArrayList<Person> persons new Arra…

实战逆向RUST语言程序

实战为主&#xff0c;近日2024年羊城杯出了一道Rust编写的题目&#xff0c;这里将会以此题目为例&#xff0c;演示Rust逆向该如何去做。 题目名称&#xff1a;sedRust_happyVm 题目内容&#xff1a;unhappy rust, happy vm 关于Rust逆向&#xff0c;其实就是看汇编&#xff…

【WebGPU Unleashed】1.4 对不同的顶点设置不同颜色

一部2024新的WebGPU教程&#xff0c;作者Shi Yan。内容很好&#xff0c;翻译过来与大家共享&#xff0c;内容上会有改动&#xff0c;加上自己的理解。更多精彩内容尽在 dt.sim3d.cn &#xff0c;关注公众号【sky的数孪技术】&#xff0c;技术交流、源码下载请添加微信号&#x…

新电脑 Windows 系统初始配置

文章目录 前言1 前置配置2 安装软件2.1 通讯工具2.2 后端开发工具2.3 硬件开发工具2.4 前端开发工具2.4 其它工具 3 Windows 11 优化4 写在最后 前言 分区&#xff08;个人习惯&#xff09;&#xff1a;1TB SSD 分为 2 个分区&#xff0c;一个 256GB 分区为系统盘&#xff0c;剩…

计算机毕业设计 基于Python的豆果美食推荐系统的设计与实现 Python+Django+Vue 前后端分离 附源码 讲解 文档

&#x1f34a;作者&#xff1a;计算机编程-吉哥 &#x1f34a;简介&#xff1a;专业从事JavaWeb程序开发&#xff0c;微信小程序开发&#xff0c;定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事&#xff0c;生活就是快乐的。 &#x1f34a;心愿&#xff1a;点…

嵌入式数据结构中线性表的具体实现

大家好,今天主要给大家分享一下,如何使用数据结构中的线性表以及具体的实现。 第一:线性表的定义和表示方法 线性表的定义 – 线性表就是零个或多个相同数据元素的有限序列。 • 线性表的表示方法 – 线性表记为: L=(a0,∙∙∙∙∙∙∙∙ai-1aiai+1 ∙∙∙∙∙∙an-1) •…

软考《信息系统运行管理员》- 4.3 信息系统软件运维的过程

4.3 信息系统软件运维的过程 文章目录 4.3 信息系统软件运维的过程日常运维日常运维的内容日常运行例行测试维护例行测试流程的关键点例行维护流程的关键点 定期测试维护 缺陷诊断与修复信息系统软件缺陷的概念信息系统软件缺陷的分类信息系统软件缺陷诊断与修复流程缺陷诊断与…

Python编程:创意爱心表白代码集

在寻找一种特别的方式来表达你的爱意吗&#xff1f;使用Python编程&#xff0c;你可以创造出独一无二的爱心图案&#xff0c;为你的表白增添一份特别的浪漫。这里为你精选了六种不同风格的爱心表白代码&#xff0c;让你的创意和情感通过代码展现出来。 话不多说&#xff0c;咱…

pyQT生成界面,更改后不清除自定义代码的方法

基本原理就是作个子类继承生成的界面&#xff0c;在子类里写代码 工程结构 dialog_ui.py 界面子类 from PyQt5 import QtCore, QtGui, QtWidgets from PyQt5.QtGui import QStandardItemModel, QStandardItem, QColor, QFont from PyQt5.QtCore import Qt import Ui_dialog i…

【英语】5. 考研英语语法体系

文章目录 前言句字的成分一、常规句型简单句&#xff08;5 种&#xff09;1. 定义&#xff1a;句子中只包含 *一套主谓结构* 的句子。&#xff08;一个句子只能有一个谓语动词&#xff09;2. 分类 并列句&#xff08;由关联词组成&#xff09;&#xff08;3 种&#xff09;基本…

Kubernetes系列之一快速部署一套K8s集群(kubeadm方式)

最近本人在重温云原生相关的技术&#xff0c;说到云原生&#xff0c;必然绕不开Kubernetes&#xff0c;今天想跟大家聊的就是大名顶顶的Kubernetes。相信很多朋友在学习和使用Kubernetes的过程遇到各式各样不同的问题。我将从一个初学者的角度来给大家讲解一下Kubernete从安装、…

嵌入式面试——FreeRTOS篇(八) Tickless低功耗

本篇为&#xff1a;FreeRTOS Tickless 低功耗模式篇 一、低功耗模式简介 1、低功耗介绍 答&#xff1a; 很多应用场合对于功耗的要求很严格&#xff0c;比如可穿戴低功耗产品、物联网低功耗产品等&#xff1b;一般MCU都有相应的低功耗模式&#xff0c;裸机开发时可以使用MCU的…

6-基于TMS320C6678、FPGA XC5VSX95T的6U CPCI 8路光纤信号处理卡

1、板卡概述   本板卡由我公司自主研发&#xff0c;基于CPCI架构&#xff0c;符合CPCI2.0标准&#xff0c;采用两片TI DSP TMS320C6678芯片和Xilinx公司V5系列FPGA XC5VSX95T-1FF1136芯片。包含PCI接口、GMII的以太网接口、Nor Flash接口、8路SFP光 纤&#xff0c;4路RS232。…