图论day56|广度优先搜索理论基础 、bfs与dfs的对比(思维导图)、 99.岛屿数量(卡码网)、100.岛屿的最大面积(卡码网)

图论day56|广度优先搜索理论基础 、bfs与dfs的对比(思维导图)、 99.岛屿数量(卡码网)、100.岛屿的最大面积(卡码网))

    • 广度优先搜索理论基础
      • bfs与dfs的对比(思维导图):
    • 99.岛屿数量(卡码网)
      • 1.深搜法
      • 2.广搜法
    • 100.岛屿的最大面积(卡码网)

广度优先搜索理论基础

  • 应用场景:

    • 适合于解决两个点之间的最短路径问题
    • 不涉及具体的遍历方式,深搜和广搜都可以
  • 广搜(bfs)的过程:

    图二

  • 代码框架:

int dir[4][2] = {0, 1, 1, 0, -1, 0, 0, -1}; // 表示四个方向
// grid 是地图,也就是一个二维数组
// visited标记访问过的节点,不要重复访问
// x,y 表示开始搜索节点的下标
void bfs(vector<vector<char>>& grid, vector<vector<bool>>& visited, int x, int y) {queue<pair<int, int>> que; // 定义队列que.push({x, y}); // 起始节点加入队列visited[x][y] = true; // 只要加入队列,立刻标记为访问过的节点while(!que.empty()) { // 开始遍历队列里的元素pair<int ,int> cur = que.front(); que.pop(); // 从队列取元素int curx = cur.first;int cury = cur.second; // 当前节点坐标for (int i = 0; i < 4; i++) { // 开始想当前节点的四个方向左右上下去遍历int nextx = curx + dir[i][0];int nexty = cury + dir[i][1]; // 获取周边四个方向的坐标if (nextx < 0 || nextx >= grid.size() || nexty < 0 || nexty >= grid[0].size()) continue;  // 坐标越界了,直接跳过if (!visited[nextx][nexty]) { // 如果节点没被访问过que.push({nextx, nexty});  // 队列添加该节点为下一轮要遍历的节点visited[nextx][nexty] = true; // 只要加入队列立刻标记,避免重复访问}}}}

要素:

  • 表示方向的二维数组
  • 表示地图的二维数组
  • 表示是否访问的二维数组
  • 坐标的数据类型
  • 能存储坐标的队列
  • 当前结点(curx,cury)和下一个结点坐标(nextx,nexty)

代码思路:将起始点存入队列并获取当前元素,再根据当前元素获取下一个元素,并存入队列

(以上主要摘自代码随想录)

bfs与dfs的对比(思维导图):

在这里插入图片描述

99.岛屿数量(卡码网)

题目描述

给定一个由 1(陆地)和 0(水)组成的矩阵,你需要计算岛屿的数量。岛屿由水平方向或垂直方向上相邻的陆地连接而成,并且四周都是水域。你可以假设矩阵外均被水包围。

输入描述

第一行包含两个整数 N, M,表示矩阵的行数和列数。

后续 N 行,每行包含 M 个数字,数字为 1 或者 0。

输出描述

输出一个整数,表示岛屿的数量。如果不存在岛屿,则输出 0。

输入示例

4 5
1 1 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 0 1 1

输出示例

3

提示信息

img

根据测试案例中所展示,岛屿数量共有 3 个,所以输出 3。

数据范围:

1 <= N, M <= 50

1.深搜法

#include <iostream>
#include <vector>
using namespace std;int dir[4][2]={0, 1, 1, 0, -1, 0, 0, -1};void dfs(const vector<vector<int>> &grid,vector<vector<bool>> &visited,int x,int y)
{if(grid[x][y]==0||visited[x][y])return;visited[x][y]=true;for(int i=0;i<4;i++){int nextx=x+dir[i][0];int nexty=y+dir[i][1];if(nextx<=0||nextx>=grid.size()||nexty<=0||nexty>=grid[1].size())continue;dfs(grid,visited,nextx,nexty);}
}int main()
{int n,m;cin>>n>>m;vector<vector<int>> grid(n+1,vector<int>(m+1,0));for(int i=1;i<=n;i++)for(int j=1;j<=m;j++){cin>>grid[i][j];}vector<vector<bool>> visited(n+1,vector<bool>(m+1,false));int result=0;for(int i=1;i<=n;i++)for(int j=1;j<=m;j++)if(grid[i][j]==1&&!visited[i][j]){result++;dfs(grid,visited,i,j);}cout<<result<<endl;return 0;
}

2.广搜法

#include <iostream>
#include <vector>
#include <queue>
using namespace std;int dir[4][2]={1,0,-1,0,0,1,0,-1};
void bfs(vector<vector<int>> grid,vector<vector<bool>>& visited,int x,int y)
{queue<pair<int,int>> que;que.push({x,y});visited[x][y]=true;while(!que.empty()){pair<int,int> cur=que.front();que.pop();int curx=cur.first;int cury=cur.second;for(int i=0;i<4;i++){int nextx=curx+dir[i][0];int nexty=cury+dir[i][1];if(nextx<=0||nextx>=grid.size()||nexty<=0||nexty>=grid[1].size())continue;if(grid[nextx][nexty]==1&&visited[nextx][nexty]==false){que.push({nextx,nexty});visited[nextx][nexty]=true;}}}
}int main()
{int n,m;cin>>n>>m;vector<vector<int>> grid(n+1,vector<int>(m+1,0));for(int i=1;i<=n;i++)for(int j=1;j<=m;j++)cin>>grid[i][j];vector<vector<bool>> visited(n+1,vector<bool>(m+1,false));int result=0;for(int i=1;i<=n;i++)for(int j=1;j<=m;j++)if(visited[i][j]==false&&grid[i][j]==1){result++;bfs(grid,visited,i,j);}cout<<result<<endl;
}

分析思路如下:

在这里插入图片描述

100.岛屿的最大面积(卡码网)

题目描述

给定一个由 1(陆地)和 0(水)组成的矩阵,计算岛屿的最大面积。岛屿面积的计算方式为组成岛屿的陆地的总数。岛屿由水平方向或垂直方向上相邻的陆地连接而成,并且四周都是水域。你可以假设矩阵外均被水包围。

输入描述

第一行包含两个整数 N, M,表示矩阵的行数和列数。后续 N 行,每行包含 M 个数字,数字为 1 或者 0,表示岛屿的单元格。

输出描述

输出一个整数,表示岛屿的最大面积。如果不存在岛屿,则输出 0。

输入示例

4 5
1 1 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 0 1 1

输出示例

4

提示信息

img

样例输入中,岛屿的最大面积为 4。

数据范围:

1 <= M, N <= 50。

#include <iostream>
#include <vector>
#include <queue>
using namespace std;int dir[4][2]={1,0,-1,0,0,1,0,-1};
void bfs(vector<vector<int>> grid,vector<vector<bool>> &visited,int x,int y,int &area)
{queue<pair<int,int>> que;que.push({x,y});visited[x][y]=true;area++;while(!que.empty()){pair<int,int> cur=que.front();que.pop();int curx=cur.first;int cury=cur.second;for(int i=0;i<4;i++){int nextx=curx+dir[i][0];int nexty=cury+dir[i][1];if(nextx<=0||nextx>=grid.size()||nexty<=0||nexty>=grid[1].size())continue;if(grid[nextx][nexty]==1&&visited[nextx][nexty]==false){que.push({nextx,nexty});visited[nextx][nexty]=true;area++;}}}
}int main()
{int n,m;cin>>n>>m;vector<vector<int>> grid(n+1,vector<int>(m+1,0));for(int i=1;i<=n;i++)for(int j=1;j<=m;j++)cin>>grid[i][j];vector<vector<bool>> visited(n+1,vector<bool>(m+1,false));int maxArea=0;for(int i=1;i<=n;i++)for(int j=1;j<=m;j++)if(visited[i][j]==false&&grid[i][j]==1){int area=0;bfs(grid,visited,i,j,area);maxArea=max(maxArea,area);}cout<<maxArea<<endl;
}

在99题的基础上加一个area即可,基本没有难度

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/446163.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++调试方法(Vscode)(一) ——本地调试

初学者在调试一段代码的时候&#xff0c;经常出于不明原因&#xff0c;写出bug&#xff0c;导致程序崩溃。但是定位崩溃的地方时&#xff0c;往往采用简单而朴素的方法&#xff1a;即采用cout或者printf进行输出。这种方式既原始&#xff0c;又低效。一个合格的工程师应该是通过…

RabbitMQ简介及安装类

RabbitMQ概述-MQ介绍 RabbitMQ是一个开源的消息代理和队列服务器&#xff0c;它支持多种消息协议&#xff0c;并且可以轻松地与多种编程语言和框架集成。RabbitMQ是使用Erlang语言编写的&#xff0c;因此它具有高并发和高可用性的特点。以下是RabbitMQ的一些关键特性和概念 消息…

华为OD机试 - 区间交叠问题 - 贪心算法(Python/JS/C/C++ 2024 E卷 100分)

华为OD机试 2024E卷题库疯狂收录中&#xff0c;刷题点这里 专栏导读 本专栏收录于《华为OD机试真题&#xff08;Python/JS/C/C&#xff09;》。 刷的越多&#xff0c;抽中的概率越大&#xff0c;私信哪吒&#xff0c;备注华为OD&#xff0c;加入华为OD刷题交流群&#xff0c;…

Django的请求与响应

Django的请求与响应 1、常见的请求2、常见的响应3、案例 1、常见的请求 函数的参数request是一个对象&#xff0c;封装了用户发送过来的所有请求相关数据。 get请求一般用来请求获取数据&#xff0c;get请求也可以传参到后台&#xff0c;但是传递的参数显示在地址栏。 post请求…

【CSS3】css开篇基础(2)

1.❤️❤️前言~&#x1f973;&#x1f389;&#x1f389;&#x1f389; Hello, Hello~ 亲爱的朋友们&#x1f44b;&#x1f44b;&#xff0c;这里是E绵绵呀✍️✍️。 如果你喜欢这篇文章&#xff0c;请别吝啬你的点赞❤️❤️和收藏&#x1f4d6;&#x1f4d6;。如果你对我的…

el-date-picker设置只有某些日期可选

示例图&#xff1a; <el-date-pickerv-model"topFormObj.upTime"type"date"value-format"timestamp"format"dd/MM/yyyy":picker-options"pickerOptions" /> 固定限制每周的周末周三不可选 data() {return {pickerOp…

[Python学习日记-46] Python 中第三方开源模块的安装、使用与上传自己写的模块

[Python学习日记-46] Python 中第三方开源模块的安装、使用与上传自己写的模块 简介 下载与安装 如何使用安装好的第三方开源模块 如何上传自己写的模块到 PyPi 简介 在前面的模块介绍和导入当中主要介绍的都是 Python 内置的一些模块&#xff0c;我们把它称为标准库&#…

【多版本并发控制(MVCC)】

并发事务问题&#xff1a; MySQL隔离级别-未提交读&#xff0c;提交读&#xff0c;可重复读&#xff0c;序列化 隔离级别对于并发事务的解决情况 隔离级别脏读不可重复读幻读未提交读不可不可不可读已提交可不可不可可重复读 &#xff08;默认&#xff09;可可不可串行化&…

vue+echarts实现雷达图及刻度标注

文章目录 前言代码实现实现效果总结 前言 最近项目有做数据可视化 大屏 不免再次使用些echarts应用 记录下其中echarts雷达图的实现 代码实现 先上代码 <template><div class"container"><div ref"chart" style"width: 500px; heig…

树莓派应用--AI项目实战篇来啦-11.OpenCV定位物体的实时位置

1. 介绍 本项目通过PCA9685舵机控制模块控制二自由度舵机云台固定在零点位置&#xff0c;然后通OpenCV检测到黄色小熊&#xff0c;找到中心位置并打印出中心位置的坐标&#xff0c;通过双色LED灯进行指示是否检测到目标&#xff0c;本项目为后面二维云台追踪物体和追踪人脸提供…

grpc的python使用

RPC 什么是 RPC &#xff1f; RPC&#xff08;Remote Procedure Call&#xff09;远程过程调用&#xff0c;是一种计算机通信协议&#xff0c;允许一个程序&#xff08;客户端&#xff09;通过网络向另一个程序&#xff08;服务器&#xff09;请求服务&#xff0c;而无需了解…

Cef加载自定义本地资源

在Cef auto build下载cefCEF Automated Builds 我下载的是104&#xff0c;使用cefsimple工程。 例如&#xff1a;前端资源如下 通过http协议把前端资源加载出来。所有的资源都通过http://local.test.cn/xxx加载。 前端资源包括index.html、test.css、test.js index.html&am…

福州少儿自闭症寄宿制学校:专注关爱每个孩子

在福州&#xff0c;少儿自闭症寄宿制学校以其专注与关爱&#xff0c;为自闭症儿童提供了一个温暖的避风港。这些学校不仅提供教育服务&#xff0c;更是一个充满爱与包容的大家庭&#xff0c;让孩子们在这里找到归属感和自信心。然而&#xff0c;当我们把目光投向广州&#xff0…

《鸟哥的Linux私房菜基础篇》---1 Linux的介绍与如何开启Linux之路

目录 一、Linux的简单介绍 1、Linux的简介 2、Linux的起源与发展 3、主要特点 4、应用场景 二、开启Linux之路 1、学习Linux的相关知识 2、正规表示法、管线命令、数据流重导向 前言 整体大纲预览 一、Linux的简单介绍 1、Linux的简介 &#xff08;1&#xff09;Linu…

[棋牌源码] 2023情怀棋牌全套源代码含多套大厅UI及600+子游源码下载

降维打击带来的优势 这种架构不仅极大提升了运营效率&#xff0c;还降低了多端维护的复杂性和成本。运营商无需投入大量资源维护多套代码&#xff0c;即可实现产品的全终端覆盖和快速更新&#xff0c;这就是产品层面的降维打击。 丰富的游戏内容与多样化大厅风格 类型&#…

VS2017 编译 SQLite3 动态库

首先官方下载源码: Tags sqlite/sqlite (github.com) 1.安装 VS2017 community edition 2.打开VS2017命令行工具 3.安装TCL 开发库,推荐 TCL 9.0 先下载源码: Tcl/Tk 9.0 使用vs2017编译tcl&

图书馆自习室座位预约管理微信小程序+ssm(lw+演示+源码+运行)

摘 要 随着电子商务快速发展世界各地区,各个高校对图书馆也起来越重视.图书馆代表着一间学校或者地区的文化标志&#xff0c;因为图书馆丰富的图书资源能够带给我们重要的信息资源&#xff0c;图书馆管理系统是学校管理机制重要的一环&#xff0c;,面对这一世界性的新动向和新…

vue3中监视 Reactive对象中的属性

watch 的第一个参数可以是不同形式的“数据源”&#xff1a;它可以是一个 ref (包括计算属性)、一个响应式对象、一个 getter 函数、或多个数据源组成的数组 一、框架&#xff1a; <template><div class"divBox"><h2>姓名&#xff1a;{{ person.…

ElasticSearch是什么?

1.概述 Elasticsearch 是一个基于 Apache Lucene 构建的开源分布式搜索引擎和分析引擎。它专为云计算环境设计&#xff0c;提供了一个分布式的、高可用的实时分析和搜索平台。Elasticsearch 可以处理大量数据&#xff0c;并且具备横向扩展能力&#xff0c;能够通过增加更多的硬…

力扣周赛:第419场周赛

&#x1f468;‍&#x1f393;作者简介&#xff1a;爱好技术和算法的研究生 &#x1f30c;上期文章&#xff1a;力扣周赛&#xff1a;第415场周赛 &#x1f4da;订阅专栏&#xff1a;力扣周赛 希望文章对你们有所帮助 因为一些特殊原因&#xff0c;这场比赛就打了1h&#xff0c…