大数据-159 Apache Kylin 构建Cube 准备和测试数据

点一下关注吧!!!非常感谢!!持续更新!!!

目前已经更新到了:

  • Hadoop(已更完)
  • HDFS(已更完)
  • MapReduce(已更完)
  • Hive(已更完)
  • Flume(已更完)
  • Sqoop(已更完)
  • Zookeeper(已更完)
  • HBase(已更完)
  • Redis (已更完)
  • Kafka(已更完)
  • Spark(已更完)
  • Flink(已更完)
  • ClickHouse(已更完)
  • Kudu(已更完)
  • Druid(已更完)
  • Kylin(正在更新…)

章节内容

上节我们完成了如下的内容:

  • Apache Kylin 安装
  • Apache Kylin 部署
  • Apache Kylin 集群模式

在这里插入图片描述

Cube 介绍

Apache Kylin 是一个开源的分布式分析引擎,专注于提供大数据的实时OLAP(在线分析处理)能力。Cube(立方体)是 Apache Kylin 的核心概念之一,通过预计算大规模数据的多维数据集合,加速复杂的 SQL 查询。下面详细介绍 Cube 的关键点:

Cube 的基本概念

Kylin 中的 Cube 是通过对一组事实表(通常是业务数据表)进行多维建模后,生成的预计算数据结构。Cube 涉及对多维数据的度量和维度的组合,从而可以在查询时通过检索预先计算的结果来显著减少计算开销。

  • 维度(Dimension):数据中用于分组、筛选和切片的数据字段,例如时间、地区、产品等。
  • 度量(Measure):通常是需要进行聚合计算的数据字段,例如销售额、订单数等。
  • Cuboid:每个 Cube 由多个 Cuboid 构成,Cuboid 是一个特定维度组合的子集。Cube 中每种维度组合都会生成一个 Cuboid,每个 Cuboid 存储了该组合下的预聚合结果。

Cube 的创建过程

  • 数据建模:首先在 Kylin 中创建一个数据模型(Data Model),这个模型定义了事实表和维度表之间的关系,类似于星型或雪花型模式。模型中也定义了需要聚合的度量字段。
  • Cube 设计:基于数据模型设计 Cube,指定 Cube 的维度和度量。Kylin 会根据定义自动计算所有可能的维度组合(Cuboid)。
  • 构建 Cube:构建过程会读取底层数据源(如 Hive、HBase、Kafka),然后根据指定的维度和度量生成每个 Cuboid 的预计算数据。这些预计算结果存储在 HBase 或其他存储引擎中。

Cube 的查询与优化

  • 查询加速:当有 SQL 查询请求到达时,Kylin 会根据查询所涉及的维度组合,选择合适的 Cuboid 返回结果,避免了实时计算,极大地提高了查询性能。
  • Cube 优化:为了控制 Cube 大小和加速构建,Kylin 支持裁剪 Cube,通过配置仅生成部分 Cuboid,这称为“Aggregation Group”,可以减少冗余计算。

实时 OLAP

Kylin 4.0 引入了对实时 OLAP 的支持,使用 Kafka 作为实时数据流输入,构建实时 Cube。通过使用 Lambda 架构,Kylin 可以支持实时和批处理数据的整合分析。

Cube 的典型应用场景

  • 大规模数据分析:Cube 适用于分析超大规模的数据集,通过预计算方式加速查询。
  • 实时分析:实时 Cube 允许用户在近乎实时的基础上分析流数据。
  • 商业智能(BI)工具的集成:Kylin 提供与 Tableau、Power BI 等常见 BI 工具的集成,用户可以使用熟悉的 SQL 查询语言进行复杂的多维分析。

前置要求

需要你配置并且启动好了 Kylin!
由于我是在 h122.wzk.icu 节点上启动的,所以下面的操作都在 h122 节点上,后续没有详细说明就是在该机器上了。

准备数据

在这里插入图片描述

准备数据

将4个数据文件:

  • dw_sales_data.txt
  • dim_channel_data.txt
  • dim_product_data.txt
  • dim_region_data.txt

我写了几个脚本来辅助生成数据
在这里插入图片描述

dw_sales_data

import random
import datetime# 设置参数
num_records = 1000
output_file = 'dw_sales_data.txt'# 定义可能的值
channel_ids = ['C001', 'C002', 'C003', 'C004']
product_ids = ['P001', 'P002', 'P003', 'P004']
region_ids = ['R001', 'R002', 'R003', 'R004']
base_date = datetime.date(2024, 1, 1)# 生成数据
with open(output_file, 'w') as f:for i in range(num_records):record_id = f"{i+1:04d}"date1 = (base_date + datetime.timedelta(days=random.randint(0, 365))).strftime('%Y-%m-%d')channel_id = random.choice(channel_ids)product_id = random.choice(product_ids)region_id = random.choice(region_ids)amount = random.randint(1, 100)price = round(random.uniform(10.0, 500.0), 2)line = f"{record_id},{date1},{channel_id},{product_id},{region_id},{amount},{price}\n"f.write(line)print(f"{num_records} records have been written to {output_file}")

生成数据如下图所示:
在这里插入图片描述

dim_channel_data

# 设置参数
output_file = 'dim_channel_data.txt'# 定义渠道ID和渠道名称
channels = [('C001', 'Online Sales'),('C002', 'Retail Store'),('C003', 'Wholesale'),('C004', 'Direct Sales')
]# 生成数据
with open(output_file, 'w') as f:for channel_id, channel_name in channels:line = f"{channel_id},{channel_name}\n"f.write(line)print(f"Channel data has been written to {output_file}")

生成数据如下图所示:
在这里插入图片描述

dim_product_data

# 设置参数
output_file = 'dim_product_data.txt'# 定义产品ID和产品名称
products = [('P001', 'Smartphone'),('P002', 'Laptop'),('P003', 'Tablet'),('P004', 'Smartwatch'),('P005', 'Camera'),('P006', 'Headphones'),('P007', 'Monitor'),('P008', 'Keyboard'),('P009', 'Mouse'),('P010', 'Printer')
]# 生成数据
with open(output_file, 'w') as f:for product_id, product_name in products:line = f"{product_id},{product_name}\n"f.write(line)print(f"Product data has been written to {output_file}")

生成数据如下图所示:
在这里插入图片描述

dim_region_data

# 设置参数
output_file = 'dim_region_data.txt'# 定义区域ID和区域名称
regions = [('R001', 'North America'),('R002', 'Europe'),('R003', 'Asia'),('R004', 'South America'),('R005', 'Africa'),('R006', 'Australia'),('R007', 'Antarctica')
]# 生成数据
with open(output_file, 'w') as f:for region_id, region_name in regions:line = f"{region_id},{region_name}\n"f.write(line)print(f"Region data has been written to {output_file}")

生成的数据如下图所示:
在这里插入图片描述

kylin_examples.sql

-- 创建订单数据库、表结构
create database if not exists `wzk_kylin`;
-- 1、销售表:dw_sales
-- id 唯一标识
-- date1 日期
-- channelId 渠道ID
-- productId 产品ID
-- regionId 区域ID
-- amount 数量
-- price 金额
create table wzk_kylin.dw_sales(id string,date1 string,channelId string,productId string,regionId string,amount int,price double
)ROW FORMAT DELIMITED FIELDS TERMINATED BY ',';
-- 2、渠道表:dim_channel
-- channelId 渠道ID
-- channelName 渠道名称
create table wzk_kylin.dim_channel(channelId string,channelName string
)ROW FORMAT DELIMITED FIELDS TERMINATED BY ',';
-- 3、产品表:dim_product
create table wzk_kylin.dim_product(productId string,productName string
)ROW FORMAT DELIMITED FIELDS TERMINATED BY ',';
--4、区域表:dim_region
create table wzk_kylin.dim_region(regionId string,regionName string
)ROW FORMAT DELIMITED FIELDS TERMINATED BY ',';-- 导入数据
LOAD DATA LOCAL INPATH '/opt/wzk/kylin_test/dw_sales_data.txt'
OVERWRITE INTO TABLE wzk_kylin.dw_sales;
LOAD DATA LOCAL INPATH '/opt/wzk/kylin_test/dim_channel_data.txt'
OVERWRITE INTO TABLE wzk_kylin.dim_channel;
LOAD DATA LOCAL INPATH '/opt/wzk/kylin_test/dim_product_data.txt'
OVERWRITE INTO TABLE wzk_kylin.dim_product;
LOAD DATA LOCAL INPATH '/opt/wzk/kylin_test/dim_region_data.txt'
OVERWRITE INTO TABLE wzk_kylin.dim_region;

运行数据

我们需要把刚才的数据上传到指定目录上,/opt/wzk/目录下。

cd /opt/wzk/kylin_test

我已经上传到服务器上了:
在这里插入图片描述

SQL文件也记得上传上去
在这里插入图片描述
执行Hive:

hive -f kylin_examples.sql

执行结果如下图所示:
在这里插入图片描述

测试数据

我们需要启动Hive

hive

执行结果如下图所示:
在这里插入图片描述
执行如下的指令:

use wzk_kylin;
select date1, sum(price) as total_money, sum(amount) as
total_amount
from dw_sales
group by date1;

执行结果如下图所示:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/446479.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

QD1-P26、27、28 CSS 属性 文本

本节(P26、27、28 三合一)学习:CSS 文本属性。 ‍ 本节视频 https://www.bilibili.com/video/BV1n64y1U7oj?p26 CSS(层叠样式表)中用于设置文本样式的属性有很多,以下是一些常用的文本属性: …

机器视觉AI场景为什么用Python比C++多?

好多开发者在讨论机在机器视觉人工智能领域的时候,纠结到底是用Python还是C,实际上,Python 和 C 都有广泛的应用,选择 Python而不是 C 可能有以下一些原因: 语言易学性和开发效率 语法简洁: Python 语法简…

Windows 安装Redis(图文详解)

Windows 安装Redis(图文详解) Redis是什么数据库? Remote Dictionary Server(Redis) 是一个开源的使用 ANSI C 语言编写、遵守 BSD 协议、支持网络、可基于内存、分布式、可选持久性的键值对(Key-Value)存储数据库,并提供多种语…

【exceljs】纯前端如何实现Excel导出下载和上传解析?

前段时间写过一篇类似的文章,介绍了sheetjs。最近发现了一个更好用的库ExcelJS,它支持高级的样式自定义,并且使用起来也不复杂。实际上sheetjs也支持高级自定义样式,不过需要使用付费版。 下面对比了Exceljs和Sheetjs&#xff1a…

SQLI LABS | SQLI LABS 靶场初识

关注这个靶场的其它相关笔记:SQLI LABS —— 靶场笔记合集-CSDN博客 0x01:SQLI LABS 靶场简介 SQLi-Labs 靶场是一个专门用于学习和测试 SQL 注入漏洞的开源靶场,该靶场提供了多个具有不同漏洞类型和难度级别的 Web 应用程序的环境。这些应用…

LabVIEW开关磁阻电机特性测量系统

基于LabVIEW软件和特定硬件组件的开关磁阻电机(SRM)特性测量系统,结合多功能数据采集卡,统能够准确地测量并分析SRM的电磁特性,从而支持电机模型的精确建立和性能优化。 项目背景 在工业生产和家用电器领域&#xff0…

树莓派应用--AI项目实战篇来啦-15.SSD Mobilenet V3目标检测

1. Mobilenet 介绍 Mobilenet 是一种专为移动和嵌入式视觉应用而设计的卷积神经网络。它们不使用标准的卷积层,而是基于使用深度可分离卷积的简化架构,使用这种架构,我们可以为移动和嵌入式设备(例如:树莓派&#xff0…

chattts一步步的记录,先跑起来。

0.下载git工具 Git - Downloads (git-scm.com)https://git-scm.com/downloads Download – TortoiseGit – Windows Shell Interface to Githttps://tortoisegit.org/download/ 1.安装 随意,可以安汉化,也可不安。无所谓 2.建个目录,我的上…

tkinter库的应用小示例:文本编辑器

tkinter库的应用小示例:文本编辑器 要 求: 创建一个文本编辑器,功能包括,创建、打开、编辑、保存文件。一个Button小组件,命名为btn_open,用于打开要编辑的文件,一个Button小组件,命名为btn_s…

Mysql(3)—数据库相关概念及工作原理

一、数据库相关概念 ​ 数据库(Database, DB) : 数据库是一个以某种有组织的方式存储的数据集合。它通常包括一个或多个不同的主题领域或用途的数据表。 数据库管理系统(Database Management System, DBMS) &#xf…

【AIGC】ChatGPT提示词Prompt高效编写模式:结构化Prompt、提示词生成器与单样本/少样本提示

💯前言 在如今AI技术迅猛发展的背景下,尽管像ChatGPT这样的大型语言模型具备强大的生成能力,但它们的输出质量有时仍难以完全满足我们的预期。为了让ChatGPT生成更加准确、可靠的内容,掌握高效的Prompt编写技巧变得尤为重要。本文…

Rust 与生成式 AI:从语言选择到开发工具的演进

在现代软件开发领域,Rust 语言正在逐步崭露头角,尤其是在高性能和可靠性要求较高的应用场景。与此同时,生成式 AI 的崛起正在重新塑造开发者的工作方式,从代码生成到智能调试,生成式 AI 的应用正成为提升开发效率和质量…

【论文阅读笔记】Bigtable: A Distributed Storage System for Structured Data

文章目录 1 简介2 数据模型2.1 行2.2 列族2.3 时间戳 3 API4 基础构建4.1 GFS4.2 SSTable4.3 Chubby 5 实现5.1 Tablet 位置5.2 Tablet 分配5.3 为 tablet 提供服务5.4 压缩5.4.1 小压缩5.4.2 主压缩 6 优化6.1 局部性组6.2 压缩6.3 缓存6.4 布隆过滤器6.5 Commit日志实现6.6 T…

【OpenCV】(三)—— 截取图片内容

ROI,全称为region of interest,意为感兴趣的区域,通常为图像中需要特别关注或处理的部分。ROI技术常用于图像分析、目标检测、特征提取等场景,能够帮助减少计算量、提高处理速度和精度。 切片获取ROI图像 我们之前介绍过使用ope…

STM32传感器模块编程实践(四)舵机+MPU6050陀螺仪模块融合云台模型

文章目录 一.概要二.实验模型原理1.硬件连接原理框图2.控制原理 三.实验模型控制流程四.云台模型程序五.实验效果视频六.小结 一.概要 云台主要用来固定摄像头。准确地说,云台是一种可以多角度调节的支撑设备,类似于人的脖子可以支撑着脑袋,…

Java_ EE (网络编程)

网络编程基本概念: 计算机网络计算机网络是指将地理位置不同的具有独立功能的多台计算机及其外部设备,通过通信线路连接起来,在网络操作系统,网络管理软件及网络通信协议的管理和协调下,实现资源共享和信息传递的计算机系统。从其…

利用弹性盒子完成移动端布局(第二次实验作业)

需要实现的效果如下&#xff1a; 下面是首先是这个项目的框架&#xff1a; 然后是html页面的代码&#xff1a; <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"wid…

springboot系列--web相关知识探索五

一、前言 web相关知识探索四中研究了请求中所带的参数是如何映射到接口参数中的&#xff0c;也即请求参数如何与接口参数绑定。主要有四种、分别是注解方式、Servlet API方式、复杂参数、以及自定义对象参数。web相关知识探索四中主要研究了复杂参数底层绑定原理。本次主要是研…

flask项目框架搭建

目录结构 blueprints python包&#xff0c;蓝图文件&#xff0c;相当于路由组的概念,方便模块化开发 例如auth.py文件 from flask import Blueprint, render_templatebp Blueprint("auth", __name__, url_prefix"/auth")bp.route("/login") d…

【双指针算法】移动零

1.题目解析 2.算法分析 可以归结为数组划分/数组分块&#xff08;采用双指针算法&#xff09;-->利用数组下标充当指针 &#xff08;1&#xff09;首先定义两个指针 dest&#xff1a;已处理的区间内&#xff0c;非零元素的最后一个位置cur&#xff1a;从左往右扫描数组&…