【全网最全】AI产品经理面试高频100题答案解析

详细的目录如下,需要的小伙伴可以详细看一下~

第一章:机器学习和深度学习的关系

第二章:机器学习7大经典算法

算法一:K近邻算法【分类算法】

1.1 KNN 算法的实现原理

1.2 KNN应用场景举例:预测候选人能不能拿到 Offer

1.3 KNN 算法优缺点

算法二:线性回归【回归算法】

2.1 线性回归算法的实现原理

2.2 线性回归算法的应用场景:广告投放

2.3 线性回归算法的优缺点

算法三:逻辑回归【分类算法】

3.1 逻辑回归算法的原理

3.2 逻辑回归算法的应用

3.3 逻辑回归算法的优缺点

算法四:朴素贝叶斯【分类算法】

4.1 朴素贝叶斯算法实现原理

4.2 朴素贝叶斯的应用案例:要不要购买延误险

4.3 朴素贝叶斯的优缺点

算法五:决策树与随机森林【分类算法】

5.1 决策树算法的实现原理

5.2 决策树的应用案例:预测用户违约

5.3 决策树的优缺点

5.4 随机森林:集体的力量

**算法六:**支持向量机【分类算法】

6.1 SVM 算法的实现原理

6.2 SVM应用场景:预测股票市场的涨与跌?

6.3 SVM 算法优缺点

算法七:K-means 聚类算法【回归算法】

7.1 K-means 算法实现原理

7.2 应用案例:K-means 算法对用户分层

7.3 K-means 聚类算法的优缺点

第三章:深度学习3大经典模型

一、神经网络

二、深度学习经典模型一:CNN算法(卷积神经网络)

2.1 CNN模型的实现原理

2.2 CNN模型的应用场景及缺点

三、深度学习经典模型二:RNN算法(循环神经网络)

3.1 RNN模型的实现原理

3.2 RNN模型的应用场景

四、深度学习经典模型三:GAN算法(生成式对抗网络)

4.1 GAN模型的实现原理

4.2 GAN模型的应用场景

五、深度学习的优缺点

第四章:AIGC的3大底层算法

一、Transformer模型

二、GPT系列模型

三、Diffusion模型

第五章:AI产品经理面试高频100题及答案解析

**第一类:**自我介绍

**第二类:**AI技术背景

2.1 什么是特征清洗、数据变换?

2.2 什么是过拟合和欠拟合?

2.3 什么是跨时间测试和回溯测试?

2.4 什么是训练集、验证集和测试集?

2.5 你之前负责产品中使用的最核心的算法是什么?这种算法有哪些优缺点?

2.6 对深度学习有哪些了解?深度学习的应用场景有哪些?

2.7 机器学习的三大类应用场景都是什么?

2.8 逻辑回归相比于线性回归,有什么区别?

2.9你能介绍一下KNN/朴素贝叶斯/SVM/CNN/Diffusion/NLP的原理吗?你熟悉哪几种深度学习和机器学习算法?都有哪些区别?

**第三类:**工作场景类

3.1 AI算法工程师说你的需求实现不了怎么办?

3.2 如果公司研发资源不足以实现你想要的功能,怎么办?

3.3 训练模型时,数据集都有哪些来源?找不到合适的数据集怎么办?

3.4 工作中,用什么样的方法清洗和整理数据?

3.5 你怎么评估一个模型的好坏?

**第四类:**AI产品经验

4.1 系统的介绍一下你负责的某某AI产品

4.2 工作中做的最失败的事情/项目/遇到的最大困难是什么?

4.3 请说说你们产品的主要竞品是谁?

**第五类:**产品素养类

5.1 AI 产品经理和传统产品经理的区别是什么?

5.2 AI 产品经理的工作流程和工作职责是什么?

5.3 AI目前在B和C有哪些落地场景?

5.4 什么样的AI产品算是成功的产品?

5.5 平时在哪些网站/渠道学习AI产品知识?

5.6 你们的模型构建流程是怎么样的?

**第六类:**行业认知

6.1 你怎么看待 AI 或者人工智能行业?对于整个AI行业有哪些认知?

6.2 结合我们公司的业务场景,通过 AI 技术可以做哪些工作来提升用户体验?

**第七类:**其他问题

7.1 为什么想做AI产品?

7.2 你做AI产品有哪些优劣势?

7.3未来的职业规划是什么?

7.4 目前有哪些offer?怎么选择?

7.5 为什么从xxx(主要是实习、工作)离职?

7.6 你在实习/工作的过程中遇到过哪些困难?最大的困难是什么?怎么解决的?在这 过程中你学到了什么?

7.7 你觉得你实习/工作期间做的最好的项目是哪个?为什么?具体介绍一下?(项目 内容)

7.8 你参与/负责的产品在市面上有哪些竞品?你们的竞争优势是什么?你更 看好哪款产品?(产品了解程度)

7.9 你平时比较喜欢哪款产品?它哪个地方吸引你?有什么可以改进的地方? (产品分析)

7.10 什么样的产品能够算作成功的产品?(产品洞察)

7.11 为什么选择xxx公司?

7.12 如果同时面对几个需求但精力有限,如何安排?(需求规划)

7.13 如果你负责的某个需求要被延期,你会怎么解决?(需求规划)

7.14 如何从0-1设计一款产品?(产品流程)

7.15 如何给一个产品进行改版发布?(产品发布)

7.16 在设计产品的过程中如何获取用户需求?(需求获取)

7.17 和老板观念发生冲突如何解决?(应变能力、沟通能力)

7.18 和开发人员发生矛盾会怎么解决?(沟通能力)

7.19 面对客户临时增加的新需求,应该如何处理?(应变能力)

7.20 新产品如何获取种子用户?(用户运营)

7.21 你平时都是通过哪些渠道搜集学习哪些互联网相关的信息?

7.22 用户调研中定性和定量调研的区别和联系

7.23 你是如何进行项目管理的?如何保障项目保质保量按时上线。

7.24 需求评审时研发说需求实现不了怎么办?

7.25 什么是用户粘性,如何提升用户的粘性?

7.26 你大概什么时候可以到岗?

7.27 你用过我们的产品么?对我们的产品有啥建议?

7.28 为什么XX个月没有工作?职场空窗期该如何解释

7.29 如何将用户需求转化为产品需求?

7.30 作为产品经理该如何进行竞品分析?方法论是什么?

7.31 作为产品经理如何进行产品迭代以及版本规划

7.32 你是怎么做用户调研的?

7.33 你是怎么做数据分析的?

7.34 你在找工作时最看重的是什么?如何进行排序?

7.35 怎样评估项目/产品的可行性?

7.36 你是如何理解“互联网思维”的?

**第八类:**自由提问

**第九类:AIGC项目类问题**

1、目前人工智能项目一般采用什么算法或模型,近些年的使用的算法或模型有什么变化

2、AI产品经理在针对算法的选择上,需要承担哪些职责,举一个具体的模型选型的例子

3、在选择特定的AI算法或者模型时,AI产品经理应如何考虑算法的性能、精确度和计算成本与业务目标之间的关系?如何通过恰当的算法选择提升了产品性能或用户体验

4、大模型是怎么训练出来的,在特征工程部分大概的过程是人为寻找的特征值还是按规则机器寻找的特征值(比如CNN)

5、如果你作为OpenAI的核心人员,你会如何通过内部资源协调,实现参数量的提升和算法服务的性能及表现的提升

6、面对大量数据,AI产品经理如何处理数据的采集、清洗和标注工作?在这些过程中,承担的是什么角色,这个过程中有没有遇到哪些问题,是如何解决的;在模型训练过程中,如何确保数据的质量和模型的准确性?

7、面对各国(主要是国内)的数据保护和隐私法规,AI产品经理应如何确保产品的合规性?过往是否有遇到哪些因数据安全问题产生重大隐患和实际影响,这些问题如果以现在来看是否可以规避

8、在跨职能团队(如工程师、设计师、市场专家等)中,AI产品经理如何有效沟通和协调,以确保产品的顺利开发和推广?

9、为什么GAN网络被SD的扩散模型取代了?仅仅是因为GAN网络的训练过程不稳定以及机器资源要求高这两个原因吗?

10、谈谈你对AI/AIGC的理解(偏宏观)

11、AI当前在XX行业都有哪些落地场景和应用?(XX要么是求职者所在的行业,要么是指应聘公司所属的行业)

12、你如何看待AIGC在文本/图片/音频/视频生产领域的应用前景?(要么是求职者AI项目的领域,要么是应聘岗位负责的领域)

13、什么是大语言模型?实现原理是什么?跟之前的算法模型有什么区别?

14、大语言模型有哪些的优势/挑战/局限性?

15、都体验过市面上哪些大语言模型?异同点是什么?

16、你是怎么做微调的?常用的微调方式有哪些?

17、对于机器人出现的幻觉问题你们是怎么避免的?

18、你了解哪些作图的模型?自己训练过Lora吗?

19、如何看待AI Agent?

20、有使用过Langchain和ControlNet吗?

21、有使用/体验过哪些比较好的AI产品?分别满足了什么用户价值?

22、AIGC技术和人工之间的平衡问题?

23、项目背景介绍?为什么要做这个项目?为什么要自己公司搞?

24、产品的整体框架以及实现流程

25、这个项目你们用的模型是哪个?为什么选这个模型?这个模型迭代到什么版本了?更新了哪些能力?跟其他模型比的优劣势是什么?

26、整个过程中你遇到的最大的困难点是什么?如何解决的?

27、项目上线之后如何评估效果?算法指标有哪些?业务指标有哪些?效果如果?后续优化思路和思考?

28、一款AIGC产品落地整个过程中,产品经理的工作流程和核心职责是什么?

随便截几张预览图片:

随便截图的示例一:KNN模型

****随便截图的示例二:线性回归模型

****随便截图的示例三:GPT训练过程

****随便截图的示例四:高频面试题及答案

****随便截图的示例五:高频面试题及答案

在这里插入图片描述

大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

在这里插入图片描述

在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
在这里插入图片描述

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/448067.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

心觉:激活潜意识财富密码:每天一练,财富自动来

Hi,我是心觉,与你一起玩转潜意识、脑波音乐和吸引力法则,轻松掌控自己的人生! 挑战每日一省写作200/1000天 为什么有些人总是轻而易举地吸引到财富 而你却努力多年仍然徘徊在财务的困境中? 你每天都在辛苦工作&…

LabVIEW离心泵监测系统

LabVIEW的离心泵监测系统在监测离心泵的运行状态,通过实时数据采集和故障预警,提高泵的运行效率和安全性。系统集成了多种传感器,利用Modbus RTU协议和RS485串口总线进行数据通信,通过LabVIEW软件平台实现数据处理和用户界面交互。…

使用 MongoDB 构建 AI:利用实时客户数据优化产品生命周期

在《使用 MongoDB 构建 AI》系列博文中,我们看到越来越多的企业正在利用 AI 技术优化产品研发和用户支持流程。例如,我们介绍了以下案例: Ventecon 的 AI 助手帮助产品经理生成和优化新产品规范 Cognigy 的对话式 AI 帮助企业使用任意语言&a…

Opencv:FisherFace算法实现人脸检测

目录 简介 实现步骤 1. 图像读取和预处理 2. 创建和训练识别器 3. 图像识别和结果展示 4、结果展示 总结 简介 在人工智能和计算机视觉领域,人脸识别是一项非常有趣且实用的技术。本文将向您介绍如何使用OpenCV库以及FisherFace算法实现人脸识别。我们将一步…

数据可视化-使用python制作词云图(附代码)

想象一下,当你写完一篇日记或者一篇文章后,想要知道里面哪些词语出现得最多。这时候,词云图就能派上用场了。它会统计出文章里每个词语出现的次数,然后把这些词语以不同大小的字体展示出来,出现次数越多的词语&#xf…

【MATLAB代码】基于RSSI原理的蓝牙定位程序(N个锚点、三维空间),源代码可直接复制

文章目录 介绍主要功能技术细节适用场景程序结构运行截图源代码详细教程:基于RSSI的蓝牙定位程序1. 准备工作2. 代码结构2.1 清理工作环境2.2 定义参数2.3 生成锚点坐标2.4 定义信号强度与距离的关系2.5 模拟未知点的位置2.6 定位函数2.7 绘图2.8 输出结果2.9 定义定位函数3. …

SSL---SSL certificate problem

0 Preface/Foreword 0.1 SSL certificate problem 开发过程中,gitlab-runner连接gitlab时候出现SSL 证书问题。 场景:公司的gitlab runner服务器引入了SSL证书,每年都会主动更新一次。当前的gitlab-runner运行在PC机器上,但是g…

某乎接口zse96解析(附带可直接运行js)

某乎接口zse96解析 下面是作者呕心沥血,观看各路大神和某乎js拼接在一起的js,附带浏览器环境,可以直接运行示例接口多请求几次发现,出来zse96在变化之外,其余的基本不变,那么源码中直接搜索x-zse-96,得出下面2个函数 var tE = eo(te, tp.body, {xUDId: tv,zse93: tT,xApp…

IO编程--拷贝文件、文件总行数输出、时间打印

一、使用fread和fwrite完成两个文件的拷贝&#xff0c;要求源文件和目标文件由外界输入 代码如下: #include <myhead.h> int main(int argc, const char *argv[]) {//判断是否输入两个文件名if(argc!3){fprintf(stderr,"文件个数错误");return -1;}//以读形式打…

【去哪儿-注册安全分析报告-缺少轨迹的滑动条】

前言 由于网站注册入口容易被黑客攻击&#xff0c;存在如下安全问题&#xff1a; 1. 暴力破解密码&#xff0c;造成用户信息泄露 2. 短信盗刷的安全问题&#xff0c;影响业务及导致用户投诉 3. 带来经济损失&#xff0c;尤其是后付费客户&#xff0c;风险巨大&#xff0c;造…

Linux系统——lvm逻辑卷

Linux系统——lvm逻辑卷 一、lvm逻辑卷1、lvm操作流程2、操作指令 二、逻辑卷操作1、创建逻辑卷1.1 /dev/cloud/openstack 5G xfs /cloud/openstack1.2 /dev/cloud/docker 10G ext4 /cloud/docker 2、逻辑卷扩容2.1 扩容流程2.2 需求一&#xff1a;扩容ext4文件系统的逻辑卷2.3…

4款高效电脑录屏软件推荐:高清、不卡顿、无水印

在当今这个数字化时代&#xff0c;屏幕录制技术已经成为教育工作者、游戏玩家以及各类数字内容创作者不可或缺的工具。一款高效、稳定的录屏软件不仅能够帮你轻松捕捉屏幕上的精彩瞬间&#xff0c;还能提升你的内容创作效率。今天&#xff0c;我们就为大家推荐5款高清、不卡顿、…

斯坦福大学提出电影剧本可视化工具ScriptViz:能够根据剧本中的文本和对话自动检索相关的电影画面,帮助剧作家更好地构思和调整剧情

title:斯坦福大学提出电影剧本可视化工具ScriptViz&#xff1a;能够根据剧本中的文本和对话自动检索相关的电影画面&#xff0c;帮助剧作家更好地构思和调整剧情 斯坦福大学的研究者们开发了一个电影剧本可视化工具ScriptViz工具&#xff0c;ScriptViz的工作原理可以简单地理解…

oceanbase的日志量太大,撑爆磁盘,修改下日志级别

oceanbase的日志量太大&#xff0c;撑爆磁盘&#xff0c;修改下日志级别&#xff1a; [adminlnpg ~]$ obclient -h127.0.0.1 -uroot -P2881 -plinux123 Welcome to the OceanBase. Commands end with ; or \g. Your OceanBase connection id is 3221561020 Server version: O…

echarts显示隐藏柱状图柱子的背景色

showBackground: true, //控制是否显示背景色backgroundStyle: {// color: rgba(180, 180, 180, 0.4) //背景色的颜色color: red} 关键代码是 showBackground: true, //控制是否显示背景色 设置为false或者直接而不写就是不显示背景色&#xff0c;默认是不显示背景色 true的时…

IO作业代码

问题 通过 fwrite和 fread去拷贝 文件到另外一个文件上 #include<myhead.h> #include <stdio.h> #include <string.h> #include <stdlib.h> #include<errno.h> #include<time.h> int main(int argc, const char *argv[]) { FILE *fp fo…

ES 全文检索完全匹配高亮查询

我们ES会将数据文字进行拆词操作&#xff0c;并将拆解之后的数据保存到倒排索引当中几十使用文字的一部分也能查询到数据&#xff0c;这种检索方式我们就称之为全文检索&#xff0c;ES的查询结果也会倒排索引中去查询匹配 下面的查询结果中输入的词&#xff0c;就是输入小也可…

【量化交易】聚宽安装

安装JQData 更换源&#xff1a; 如果使用的是pip默认的PyPI源&#xff0c;可以尝试更换为一个更快的国内镜像源。例如阿里云、豆瓣等提供的PyPI镜像。 更改方法可以通过设置环境变量或者在pip命令中直接指定&#xff1a; PS C:\Users\bilirjs\Documents> pip config set …

第100+28步 ChatGPT学习:概率校准 Bayesian Calibration

基于Python 3.9版本演示 一、写在前面 最近看了一篇在Lancet子刊《eClinicalMedicine》上发表的机器学习分类的文章&#xff1a;《Development of a novel dementia risk prediction model in the general population: A large, longitudinal, population-based machine-learn…

Qt-窗口对话框相关操作(50)

目录 描述 创建 使用 点击弹出对话框 内存泄漏问题 自定义对话框 纯代码 界面操作 模态和非模态对话框 描述 对话框是 GUI 程序中不可或缺的组成部分。⼀些不适合在主窗⼝实现的功能组件可以设置在对话框中。对话框通常是⼀个顶层窗⼝&#xff0c;出现在程序最上层&am…