【Linux】:线程概念

朋友们、伙计们,我们又见面了,本期来给大家带来线程概念相关代码和知识点,如果看完之后对你有一定的启发,那么请留下你的三连,祝大家心想事成!

C 语 言 专 栏:C语言:从入门到精通

数据结构专栏:数据结构

个  人  主  页 :stackY、

C + + 专 栏   :C++

Linux 专 栏  :Linux

​ 

目录

​编辑​ 

1. 线程的概念

2. 线程的理解

3. 线程的优缺点 

4. 重谈地址空间

4.1 虚拟地址的转化 

5.5 进程和线程


1. 线程的概念

关于线程有两种概念:

  • ① 线程是比进程更加轻量化的一种执行流 / 线程是进程内部执行的一种执行流;
  • ② 线程是CPU调度的基本单位 / 进程是承担系统资源的基本实体。

那么为什么要有线程呢?

我们创建进程就是要让它执行我们的代码,但是进程的创建到运行这个阶段需要做很多事情(从磁盘加载可执行、由虚拟到物理的转化等等),如果我们只是想单纯的运行代码,那么有很多个可执行需要运行的话,通过创建进程的方式来运行就有点太麻烦了,所以需要有一种比进程更加轻量化的去执行我们的代码。

因为地址空间是进程的“资源窗口”,所以进程可以这个窗口来进行资源的获取,所以为了减少成本,只创建PCB,然后指向同一个虚拟地址空间,实现共享,简单的理解就是将虚拟地址空间中的代码区、数据区、堆栈区进行划分为多个小块,此时多个PCB指向虚拟地址空间只参与资源的分配任务。

那么既然有线程,OS也需要对这些线程进行管理,那么怎么管理呢?先描述、再组织,如果重新设置一套对于线程的管理方法那么实在太麻烦了,线程和进程很相似,所以直接采用管理进程的那一套方案即可,直接复用。

2. 线程的理解

CPU是调度执行流来运行的,那么在了解完线程之后,CPU获取到一个执行流大小是小于等于进程。这该怎么理解呢?我们如何看待现在的进程呢?内部包含多个执行流的进程!

进程 = 内核数据结构 + 代码和数据,现在所说的进程就是包含进程PCB、虚拟地址空间、页表、代码和数据。

其中不只包含一个执行流,而是有多个执行流(在一个地址空间有多个PCB)。

我们之前看待进程其中里面只有一个执行流,所以CPU在调度的时候,如果调度的进程只有一个执行流,那么就是进程,如果有多个执行流,那么就调度其中一个执行流,就叫做线程,所以CPU在调度执行流的大小总是小于等于进程! 

所以线程是CPU调度的基本单位,而进程是承担系统资源的基本实体。

所以创建线程只需要创建PCB,所以线程也叫做轻量级进程。

所以可以得出:

  • 1. 线程的创建相比进程更加简单;
  • 2. 线程在进程的地址空间中运行。

接下来我们通过代码的方式先直观的看一下线程,其中关于线程控制的代码会专门解释,先观察代码运行结果:

#include <iostream>
#include <unistd.h>
#include <pthread.h>
#include <sys/types.h>
#include <unistd.h>// 新线程
void *ThreadRoutine(void *arg)
{const char *threadname = (const char *)arg;while (true){std::cout << "I am a new thread: " << threadname << ", pid: " << getpid() << std::endl;sleep(1);}
}int main()
{pthread_t tid;// 创建线程pthread_create(&tid, nullptr, ThreadRoutine, (void *)"thread 1");// 主线程while (true){std::cout << "I am main thread" << ", pid: " << getpid() << std::endl;sleep(1);}return 0;
}

这段代码首先会创建一个新的线程,然后一个执行流去执行新线程的代码,紧接着往下走就是主线程的代码,代码结果就是会有两个循环在一直执行:

使用指令 ps -aL可以查看线程:

可以看出线程的调度区分并不是用PID来区分,而是LWP,并且主线程的LWP和PID一样。

3. 线程的优缺点 

优点:

  • 创建一个新线程的代价要比创建一个新进程小得多
  • 与进程之间的切换相比,线程之间的切换需要操作系统做的工作要少很多
  • 线程占用的资源要比进程少很多
  • 能充分利用多处理器的可并行数量
  • 在等待慢速I/O操作结束的同时,程序可执行其他的计算任务
  • 计算密集型应用,为了能在多处理器系统上运行,将计算分解到多个线程中实现
  • I/O密集型应用,为了提高性能,将I/O操作重叠。线程可以同时等待不同的I/O操作。

缺点:

  • 健壮性降低,多线程在运行时,各个线程之间不相互独立,一个线程的异常很有可能导致其它线程出现异常,换句话说线程之间是缺乏保护的
  • 缺乏访问控制,在一个线程中调用某些OS函数有可能会对整个进程造成影响
  • 调试难度比较高,多线程程序比单线程程序调试更为复杂

4. 重谈地址空间

我们的可执行程序被编译好之后以ELF的格式存储在磁盘上,当要执行时会先加载的内存,在之前文件系统部分了解到文件系统IO的基本单位大小是4KB,即使我们所要修改的数据只有1比特位,也需要一次性加载4KB,所以为了统一和方便,将物理内存以4KB划分为多个小块,每一个块被叫做一个页框,磁盘文件中的文件以4KB分为多个小块,每一块被叫做一个页帧,这样子每一次加载磁盘文件时,就根据4KB很容易的将数据加载进来。

以32位4GB的机器来计算,页框的数量有10万多个页框,所以OS也需要将这些页框给管理起来,所以就需要先描述再组织,为页框构建描述结构体的对象(包含页框的属性、使用情况、标志位等等),然后用数组将这些结构体管理,对页框的管理就变成了对数组的增删查改。

4.1 虚拟地址的转化 

通过上面对物理内存以4KB进行划分,所以虚拟地址到物理地址的转化不只只通过页表来转化,虚拟到物理的转化其实是在CPU内部转化的,在我们的CPU中的eip寄存器保存的是虚拟地址,当CPU拿到一个虚拟地址时会通过MMU从虚拟到物理的转化:

例如:虚拟地址32个比特位

1111 1111 1110 0000 0000 0000 0000 0001 

  • 前10个比特位可以找到对应的页目录;
  • 次10个比特位可以找到页表,通过页表可以找到页框;
  • 页框起始地址 + 低12个比特位可以找到页内偏移;

通过整个的虚拟地址就可以访问到物理地址上的数据内容。

可以看到其实划分页表的本质就是划分地址空间。

5.5 进程和线程

进程是资源分配的基本单位
线程是调度的基本单位
线程共享进程数据,但也拥有自己的一部分数据:
  • 线程ID
  • 一组寄存器
  • errno
  • 信号屏蔽字
  • 调度优先级

简单的每个线程都有自己独立的硬件上下文数据与栈结构。

各线程还共享以下进程资源和环境:

  • 文件描述符表
  • 每种信号的处理方式(SIG_ IGNSIG_ DFL或者自定义的信号处理函数)
  • 当前工作目录
  • 用户id和组id

朋友们、伙计们,美好的时光总是短暂的,我们本期的的分享就到此结束,欲知后事如何,请听下回分解~,最后看完别忘了留下你们弥足珍贵的三连喔,感谢大家的支持!   

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/451082.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

9.存储过程安全性博客大纲(9/10)

存储过程安全性博客大纲 引言 在数据库系统中&#xff0c;存储过程是一种预先编写好的SQL代码集合&#xff0c;它被保存在数据库服务器上&#xff0c;可以通过指定的名称来调用执行。存储过程可以包含一系列的控制流语句&#xff0c;如IF条件语句、WHILE循环等&#xff0c;使…

智能汽车制造:海康NVR管理平台/工具EasyNVR多品牌NVR管理工具/设备实现无插件视频监控直播方案

一、背景介绍 近年来&#xff0c;随着网络在我国的普及和深化发展&#xff0c;企业的信息化建设不断深入&#xff0c;各行各业都加快了信息网络平台的建设&#xff0c;大多数单位已经或者正在铺设企业内部的计算机局域网。与此同时&#xff0c;网络也成为先进的新兴应用提供了…

【Git】基本操作+分支管理

Git基本操作 Git仓库创建 Git仓库的基本认知 Git仓库就是一个用来跟踪和管理项目文件变化的地方&#xff0c;其记录了所有的修改历史&#xff0c;可以回退到之前的任何一个历史版本 工作区&#xff1a;正在进行实际操作的文件夹暂存区&#xff1a;临时保存想要提交修改的区域…

【LeetCode:349. 两个数组的交集 + 哈希表】

&#x1f680; 算法题 &#x1f680; &#x1f332; 算法刷题专栏 | 面试必备算法 | 面试高频算法 &#x1f340; &#x1f332; 越难的东西,越要努力坚持&#xff0c;因为它具有很高的价值&#xff0c;算法就是这样✨ &#x1f332; 作者简介&#xff1a;硕风和炜&#xff0c;…

鸿蒙原生应用扬帆起航

就在2024年6月21日华为在开发者大会上发布了全新操作的系统HarmonyOS Next开发测试版&#xff0c;网友们把它称之为“称之为纯血鸿蒙”。因为在此之前鸿蒙系统底层式有两套基础架构的&#xff0c;一套是是Android的AOSP&#xff0c;一套是鸿蒙的Open Harmony&#xff0c;因为早…

计算机毕业设计 基于Python的毕业生去向反馈调查平台的设计与实现 Python毕业设计选题 前后端分离 附源码 讲解 文档

&#x1f34a;作者&#xff1a;计算机编程-吉哥 &#x1f34a;简介&#xff1a;专业从事JavaWeb程序开发&#xff0c;微信小程序开发&#xff0c;定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事&#xff0c;生活就是快乐的。 &#x1f34a;心愿&#xff1a;点…

物联网IoT平台 | 物联网IoT平台的定义

物联网IoT平台&#xff1a;定义、发展与应用在当今信息化时代&#xff0c;物联网&#xff08;Internet of Things&#xff0c;简称IoT&#xff09;已经成为推动社会进步和产业升级的重要力量。物联网IoT平台&#xff0c;作为连接物理世界与数字世界的桥梁&#xff0c;正逐步改变…

Docker安装Nginx

前提&#xff1a;Docker已安装好&#xff0c;本人使用的为自带docker的云服务器&#xff0c;docker常用命令已掌握&#xff0c;yjj为在根目录创建的一个文件夹&#xff0c;可自行修改对应的目录。 1、安装镜像&#xff0c;可去dockerhub上面找&#xff0c;一般都是组件名称。do…

双十一值得购买超声波清洗机吗?双十一超声波清洗机好物品牌推荐

随着双十一购物狂欢节即将拉开序幕&#xff0c;越来越多的消费者开始关注这个一年一度的购物盛宴。超声波清洗机作为近年来备受关注的家用电器&#xff0c;以其高效、便捷的清洁能力赢得了众多家庭的喜爱。在双十一期间&#xff0c;各大品牌纷纷推出优惠活动&#xff0c;让不少…

红黑树的底层讲解

一、红黑树的介绍 红黑树&#xff0c;是一种二叉搜索树&#xff0c;但在每个结点上增加一个存储位表示结点的颜色&#xff0c;可以是红&#xff08;red&#xff09;或黑&#xff08;black&#xff09;。通过对任何一条从根到叶子的路径上各个结点着色方式的限制&#xff0c;红…

通过比较list与vector在简单模拟实现时的不同进一步理解STL的底层

cplusplus.com/reference/list/list/?kwlist 当我们大致阅读完list的cplusplus网站的文档时&#xff0c;我们会发现它提供的接口大致上与我们的vector相同。当然的&#xff0c;在常用接口的简单实现上它们也大体相同&#xff0c;但是它们的构造函数与迭代器的实现却大有不同。…

计算机网络:数据链路层 —— 共享式以太网

文章目录 共享式以太网CSMA/CD 协议CSMA/CD 协议 的基本原理 共享式以太网的争用期共享式以太网的最小帧长共享式以太网的最大帧长共享式以太网的退避算法截断二进制指数退避算法 共享二进制以太网的信道利用率使用集线器的共享式以太网10BASE-T 共享式以太网 共享式以太网是当…

自监督学习:引领机器学习的新革命

引言 自监督学习&#xff08;Self-Supervised Learning&#xff09;近年来在机器学习领域取得了显著进展&#xff0c;成为人工智能研究的热门话题。不同于传统的监督学习和无监督学习&#xff0c;自监督学习通过利用未标注数据生成标签&#xff0c;从而大幅降低对人工标注数据…

Modbus TCP 西门子PLC指令以太口地址配置以及 Poll Slave调试软件地址配置

1前言 本篇文章讲了 Modbus TCP通讯中的一些以太网端口配置和遇到的一些问题&#xff0c; 都是肝货自己测试的QAQ。 2西门子 SERVER 指令 该指令是让外界设备主动连接此PLC被动连接&#xff0c; 所以这里应该填 外界设备的IP地址。 这边 我因为是电脑的Modbus Poll 主机来…

反弹shell检测的一些思路

前言 反弹shell是攻击者常用的手段之一&#xff0c;通过反弹Shell&#xff0c;攻击者可以绕过防火墙&#xff0c;获取目标系统的shell访问权限&#xff0c;进行后续的恶意操作。因此&#xff0c;及时检测并阻止反弹Shell行为对于安全防护来说非常重要。本文通过介绍反弹shell的…

Kafka原理剖析之「Purgatory(炼狱 | 时间轮)」

一、前言 本文介绍一下Kafka赫赫有名的组件Purgatory&#xff0c;相信做Kafka的朋友或多或少都对其有一定的了解&#xff0c;至少是听过它的名字。那它的作用是什么呢&#xff0c;用来解决什么问题呢&#xff1f;官网confluent早就有文章对其做了阐述 https://cwiki.apache.o…

Redis和Jedis的区别

目录 含义与用途 Jedis案例 总结 含义与用途 Redis&#xff1a; 概念&#xff1a;Redis是一个基于内存的键值存储数据库&#xff0c;支持丰富的数据结构。比如&#xff1a;字符串功能&#xff1a;除了基础的数据存储&#xff0c;Redis还提供了丰富的高级功能。如持久化&…

golang生成并分析cpu prof文件

1. 定义一个接口&#xff0c;请求接口时&#xff0c;生成cpu.prof文件 在主协程中新启一个协程&#xff0c;当请求接口时&#xff0c;生成一个60秒的cpu.prof文件 go func() {http.HandleFunc("/prof", startProfileHandler)http.ListenAndServe(":9092"…

MySQL中什么情况下类型转换会导致索引失效

文章目录 1. 问题引入2. 准备工作3. 案例分析3.1 正常情况3.2 发生了隐式类型转换的情况 4. MySQL隐式类型转换的规则4.1 案例引入4.2 MySQL 中隐式类型转换的规则4.3 验证 MySQL 隐式类型转换的规则 5. 总结 如果对 MySQL 索引不了解&#xff0c;可以看一下我的另一篇博文&…

markdown 笔记,语法,技巧

起因&#xff0c; 目的: markdown 有些语法&#xff0c;不常用&#xff0c;记不住。单独记录一下。 1. 插入数学公式 用 $$ 来包裹住多行数学公式。 $$ 多行数学公式 $$ 2. 2个星号 ** &#xff0c; 加粗&#xff0c; 3. 单行代码的 引用&#xff0c; 左右各一个顿号 8.…