linux网络编程5——Posix API和网络协议栈,使用TCP实现P2P通信

文章目录

  • Posix API和网络协议栈,使用TCP实现P2P通信
    • 1. socket()
    • 2. bind()
    • 3. listen()
    • 4. connect()
    • 5. accept()
    • 6. read()/write(), recv()/send()
    • 7. 内核tcp数据传输
      • 7.1 TCP流量控制
      • 7.2 TCP拥塞控制——慢启动/拥塞避免/快速恢复/快速重传
    • 8. shutdown()
    • 9. close()
      • 9.1 正常情况
      • 9.2 主动关闭方在fin_wait_1状态下先收到FIN
      • 9.3 双方同时收到FIN报文
    • 10. 使用TCP协议实现点对点通信
    • 学习参考

Posix API和网络协议栈,使用TCP实现P2P通信

本文介绍了linux Posix API涉及网络编程的常用函数,并解释其原理和涉及的网络协议栈。最后,利用TCP三次握手中同时打开建立连接的情况实现了P2P通信。

TCP状态转换图

1. socket()

socke()的主要作用是分配fd和建立tcb(tcp control block)

  • 分配fd,内部通过一个bitmap标记一个fd是否已被使用。
  • 建立tcb,alloc(),此时还没有分配接受缓冲区和发送缓冲区。

TCB 是操作系统内核中用于跟踪每个 TCP 连接的核心数据结构,包含了与连接相关的状态信息,比如源地址、目标地址、端口号、窗口大小、序列号等。

2. bind()

将本地ip和和端口绑定到fd对应的tcb中。客户端fd如果bind了的话,则本地端口就会固定。

3. listen()

  1. 将监听套接字tcb中的status设置为TCP_STATUS_LISTEN。
  2. 为监听套接字tcb分配两个队列:半连接队列syn_queue和全连接队列accept_queue
    • syn_queue,存储还未完成三次握手的请求。Linux 中的 tcp_max_syn_backlog决定了 syn_queue 的最大容量。
    • accpet_quque,存储已经完成三次握手,等待应用层调用accpet()的请求。如 Linux 中的 somaxconn决定了其容量。
int listen(int sockfd, int backlog);

其中backlog最早70年代指的是syn_queue队列的长度,也就是收到SYN但是还没有完成三次握手的请求的队列长度。中间指的是两个队列的长度之和的最大值。现在指的是accpet队列最大长度。这样应用程序可以主要关注待处理连接请求的数量。

tcp连接的生命周期,从什么时候开始?

从收到第一个SYN报文的时候开始,开始创建tcb,连接开始建立。

第三次握手的数据包,如何从半连接队列查找匹配的节点?

每一个TCP报文段中都包含源ip、目的ip、源端口等五元组信息,据此可以查找匹配。

如何解决SYN泛洪/DDOS攻击?

限制半连接队列的最大长度。

4. connect()

connect()用于客户端主动建立与对端的连接,可能有两种情况。

三次握手主要是为了通信的同步,交换序号信息,保证之后的通信不丢失、不乱序。

  1. 正常主动打开
image-20241025125049588
  1. 同时打开

适用于P2P通信,需要双方同时调用connect()。

image-20241025130536095

5. accept()

用于从全连接队列中取出一个连接,并分配fd。

水平触发

每次只接受一个连接,效率较低。

边缘触发 + 非阻塞IO

使用一个循环,如果accept返回-1并且errno为EAGAIN或者EWOULDBLOCK,则退出循环。

while (1)
{fd = accept(listen_fd, &clnt_addr, &clnt_addr_len);if (fd == -1){if (errno == EAGAIN || errno == EWOULDBLOCK)break;}// 处理新连接
}

6. read()/write(), recv()/send()

这些IO函数都是与系统内的接收缓冲区和发送缓冲区之间传输数据,而非直接与网卡。tcp报文段的接受与发送和这些IO函数没有一对一的关系。

7. 内核tcp数据传输

TCP协议头

在这里插入图片描述

7.1 TCP流量控制

滑动窗口

TCP使用了滑动窗口中的回退n自动重复请求机制。原理是当某个数据段未被正确接收,则接收方不会确认其后续的数据段;当发送方发现超时或者收到重复的ACK时,会回退到未被确认的第一个数据段继续发送。

延迟确认

如果数据乱序到达,可以等待一段时间,在进行确认。

超时重传

7.2 TCP拥塞控制——慢启动/拥塞避免/快速恢复/快速重传

慢启动是 TCP 在建立连接或从网络拥塞中恢复时使用的拥塞控制算法,旨在探测网络的可用带宽,并逐步增加发送速率,避免在一开始就超载网络。

发送端在收到一个ACK之前,发送窗口的大小是由接收端接收窗口大小和本端拥塞窗口的大小决定的。

慢启动算法是指发送端拥塞窗口在到达慢启动阈值之前(称之为慢启动姐阶段)进行指数级增长。到达ssthresh(slow start threshhold)后进入拥塞避免阶段,拥塞窗口进行线性增长。当超时重传时,ssthresh变为当前拥塞窗口的一半,并重新开始慢启动阶段。

快速恢复用于在丢包被检测到(连续收到三个重复ACK)后,不必将拥塞窗口完全重置为 1 MSS,而是通过调整 cwndssthresh,更快地恢复到稳定传输的状态。

连续收到三个重复ACK,说明这与超时不同,表明网络可能并未完全拥塞,仍然存在一定的可用带宽。

具体来说,当检测到丢包时,发送方将 慢启动阈值 (ssthresh) 设置为当前 cwnd 的一半,然后发送方将 cwnd 减小到 ssthresh 的大小,同时跳过慢启动阶段,直接进入拥塞避免阶段。收到连续三个重复ACK时,也会对数据进行快速重传,而非等到超时。

8. shutdown()

进行半关闭,关闭写端。不推荐使用,因为它会使代码逻辑变复杂。

9. close()

当通信两端有调用close()来关闭tcp连接时,可能会发生以下三种交互情况。

9.1 正常情况

image-20241023201936418

9.2 主动关闭方在fin_wait_1状态下先收到FIN

image-20241023202659220

9.3 双方同时收到FIN报文

image-20241023202946556

10. 使用TCP协议实现点对点通信

参考4. connect()中的同时打开模型。让双方同时(在超时周期之内)调用connect即可。演示代码如下:

client1.c

#include <stdio.h>
#include <string.h>#include <sys/socket.h>
#include <arpa/inet.h>
#include <unistd.h>int main(int argc, char const *argv[])
{struct sockaddr_in local_addr = {0}, peer_addr = {0};int sock_fd = socket(PF_INET, SOCK_STREAM, 0);local_addr.sin_family = AF_INET;local_addr.sin_addr.s_addr = htonl(INADDR_ANY);local_addr.sin_port = htons(2000);peer_addr.sin_family = AF_INET;peer_addr.sin_addr.s_addr = inet_addr("127.0.0.1");peer_addr.sin_port = htons(2001);if (bind(sock_fd, (struct sockaddr *)&local_addr, sizeof local_addr) == -1){perror("bind()");close(sock_fd);return 1;}char message[100] = "hello I am KAKA";while (1){if (connect(sock_fd, (struct sockaddr *)&peer_addr, sizeof peer_addr) == -1){usleep(50);continue;}write(sock_fd, message, strlen(message));close(sock_fd);break;}return 0;
}

client2.c

#include <stdio.h>
#include <string.h>#include <sys/socket.h>
#include <arpa/inet.h>
#include <unistd.h>int main(int argc, char const *argv[])
{struct sockaddr_in local_addr = {0}, peer_addr = {0};int sock_fd = socket(PF_INET, SOCK_STREAM, 0);local_addr.sin_family = AF_INET;local_addr.sin_addr.s_addr = htonl(INADDR_ANY);local_addr.sin_port = htons(2001);if (bind(sock_fd, (struct sockaddr *)&local_addr, sizeof local_addr) == -1){perror("bind()");close(sock_fd);return 1;}peer_addr.sin_family = AF_INET;peer_addr.sin_addr.s_addr = inet_addr("127.0.0.1");peer_addr.sin_port = htons(2000);char buf[100];int received;while (1){if (connect(sock_fd, (struct sockaddr *)&peer_addr, sizeof peer_addr) == -1){usleep(50);continue;}if ((received = read(sock_fd, buf, sizeof buf - 1)) != 0){if (received == -1){perror("read()");close(sock_fd);return 1;}buf[received] = 0;printf("from peer:\n%s\n", buf);}close(sock_fd);break;}return 0;
}

学习参考

学习更多相关知识请参考零声 github。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/456805.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python游戏开发超详细第二课/一个小游戏等制作过程(入门级篇共2节)

直播内容&#xff0c;这里都用大多用照片代替了哈&#xff0c;因为在写一遍很累&#xff0c;哥哥姐姐理解一下抱歉抱歉 一个是我懒的写一遍&#xff0c;但是刚学的兄弟姐妹可不许学我偷懒哈 二防止有人偷懒&#xff0c;直接复制粘贴代码&#xff0c;所以为了方便帮助你们学习&a…

基于docker 部署redis

1、拉取镜像 docker pull redis:latest如果拉取失败可以尝试下配置镜像源&#xff0c;具体参考如下&#xff0c;目前暂可以使用 Docker切换镜像源-CSDN博客 2、创建配置文件 mkdir /usr/local/redis/conf vim redis.conf bind 0.0.0.0#protected-mode no port 6379 tcp-b…

新手直播方案

简介 新手直播方案 &#xff0c;低成本方案 手机/电脑 直接直播手机软件电脑直播手机采集卡麦电脑直播多摄像机 机位多路采集卡 多路麦加电脑&#xff08;高成本方案&#xff09; 直播推流方案 需要摄像头 方案一 &#xff1a;手机 电脑同步下载 网络摄像头 软件&#xff08…

【南方科技大学】CS315 Computer Security 【Lab6 IoT Security and Wireless Exploitation】

目录 Introduction (Part 1: OS Security for IoT )Software RequirementsStarting the Lab 6 Virtual MachineSetting up the Zephyr Development EnvironmentDownload the Zephyr Source CodeInstalling Requirements and DependenciesSetting the Project’s Environment Va…

【linux】服务器Ubuntu20.04安装cuda11.8教程

【linux】服务器Ubuntu20.04安装cuda11.8教程 文章目录 【linux】服务器Ubuntu20.04安装cuda11.8教程到官网找到对应版本下载链接终端操作cudnn安装到官网下载下载后解压进入解压后的目录&#xff1a;将头文件复制到 /usr/local/cuda/include/ 目录&#xff1a;将库文件复制到 …

利用客户端导入有关联的业务数据(DBeaver+sql)

前言 最近有点坑&#xff0c;麻辣烫的活落手上了&#xff0c;上个迭代除了自己的开发任务&#xff0c;还有处理接手的工作。然后节后问题又多&#xff0c;还有前1个迭代没有测试的模块本迭代测试&#xff0c;烦死了。 这次这个数据处理的活&#xff0c;以后希望可以交出…

mac电脑设置chrome浏览器语言切换为日语英语等不生效问题

在chrome中设置了语言&#xff0c;并且已经置顶了&#xff0c;但是不生效&#xff0c;在windows上直接有设置当前语言为chrome显示语言&#xff0c;但是mac上没有。 解决办法 在系统里面有一个单独给chrome设置语言的&#xff1a; 单独给它设定成指定的语言&#xff0c;然后重…

川渝地区计算机考研择校分析

C哥专业提供——计软考研院校选择分析专业课备考指南规划 添加图片注释&#xff0c;不超过 140 字&#xff08;可选&#xff09; 根据最新数据分析,5所高校计算机专业2025年考研难度从高到低预计为: 电子科技大学 >> 四川大学 > 重庆大学 ≈ 西南交通大学 > 西南…

Vision-Language Models for Vision Tasks: A Survey阅读笔记

虽然LLM的文章还没都看完&#xff0c;但是终究是开始看起来了VLM&#xff0c;首当其冲&#xff0c;当然是做一片文献综述啦。这篇文章比较早了&#xff0c;2024年2月份出的last version。 文章链接&#xff1a;https://arxiv.org/abs/2304.00685 GitHub链接&#xff1a;GitHu…

命名空间std, using namespace std

命名空间std&#xff0c;using namespace std 在标准C以前&#xff0c;都是用#include<iostream.h>这样的写法的&#xff0c;因为要包含进来的头文件名就是iostream.h。标准C引入了名字空间的概念&#xff0c;并把iostream等标准库中的东东封装到了std名字空间中&#x…

【linux网络编程】| 网络基础 | 解析IP与Mac地址的区别

前言&#xff1a;本节内容讲解一些网络基础相关的知识点&#xff0c; 不涉及网络代码&#xff01;同样的本节内容是作为前一篇的补充知识点&#xff0c; 前一篇文章地址&#xff1a;【linux网络编程】 | 网络基础Ⅰ| 认识网络-CSDN博客&#xff0c;本篇文章内容较少&#xff0c…

【论文笔记】MLSLT: Towards Multilingual Sign Language Translation

&#x1f34e;个人主页&#xff1a;小嗷犬的个人主页 &#x1f34a;个人网站&#xff1a;小嗷犬的技术小站 &#x1f96d;个人信条&#xff1a;为天地立心&#xff0c;为生民立命&#xff0c;为往圣继绝学&#xff0c;为万世开太平。 基本信息 标题: MLSLT: Towards Multiling…

计算机网络:网络层 —— IPv4 协议的表示方法及其编址方法

文章目录 IPv4IPv4的表示方法IPv4的编址方法分类编址A类地址B类地址C类地址可指派的地址数量一般不使用的特殊IPv4地址 划分子网编址子网掩码默认子网掩码 无分类编址方法地址掩码斜线记法无分类域间路由选择 CIDR IPv4 IPv4&#xff08;Internet Protocol version 4&#xff…

麒麟v10 arm64 部署 kubesphere 3.4 修改记录

arm64环境&#xff0c;默认安装 kubesphere 3.4 &#xff0c;需要修改几个地方的镜像&#xff0c;并且会出现日志无法显示 1 fluentbit:v1.9.4 报错 <jemalloc>: Unsupported system page size Error in GnuTLS initialization: ASN1 parser: Element was not found. &…

C++ [项目] 愤怒的小鸟

现在才发现C游戏的支持率这么高&#xff0c;那就发几篇吧 零、前情提要 此篇为 制作,由于他没有CSDN,于是由我代发 一、基本介绍 支持Dev-C5.11版本(务必调为英文输入法),基本操作看游戏里的介绍,怎么做的……懒得说,能看懂就看注释,没有的自己猜,如果你很固执……私我吧 …

Oracle SQL Developer 同时打开多个table的设置

Oracle SQL Developer 同时打开多个table的设置 工具 》 首选项 》数据库 》对象查看器&#xff0c;勾选 “自动冻结对象查看器窗口”

数据结构------手撕顺序表

文章目录 线性表顺序表的使用及其内部方法ArrayList 的扩容机制顺序表的几种遍历方式顺序表的优缺点顺序表的模拟实现洗牌算法 线性表 线性表&#xff08;linear list&#xff09;是n个具有相同特性的数据元素的有限序列。 线性表是一种在实际中广泛使用的数据结构&#xff0c;…

TLS协议基本原理与Wireshark分析

01背 景 随着车联网的迅猛发展&#xff0c;汽车已经不再是传统的机械交通工具&#xff0c;而是智能化、互联化的移动终端。然而&#xff0c;随之而来的是对车辆通信安全的日益严峻的威胁。在车联网生态系统中&#xff0c;车辆通过无线网络与其他车辆、基础设施以及云端服务进行…

Lucas带你手撕机器学习——套索回归

好的&#xff0c;下面我将详细介绍套索回归的背景、理论基础、实现细节以及在实践中的应用&#xff0c;同时还会讨论其优缺点和一些常见问题。 套索回归&#xff08;Lasso Regression&#xff09; 1. 背景与动机 在机器学习和统计学中&#xff0c;模型的复杂性通常会影响其在…

【云原生】Kubernets1.29部署StorageClass-NFS作为存储类,动态创建pvc(已存在NFS服务端)

文章目录 在写redis集群搭建的时候,有提到过使用nfs做storageclass,那时候kubernetes是1.20版本,https://dongweizhen.blog.csdn.net/article/details/130651727 现在使用的是kubernetes 1.29版本,根据之前的修改方式并未生效,反而提示:Error: invalid argument "Re…