【CUDA代码实践03】m维网格n维线程块对二维矩阵的索引

文章目录

  • 一、数据存储方式
  • 二、二维网格二维线程块
  • 三、二维网格一维线程块
  • 四、一维网格一维线程块

为了方便下次找到文章,也方便联系我给大家提供帮助,欢迎大家点赞👍、收藏📂和关注🔔!一起讨论技术问题💻,一起学习成长📚!如果你有任何问题或想法,随时留言,我会尽快回复哦😊!


近年来,人工智能(AI)技术,尤其是大模型的快速发展,打开了全新的时代大门。对于想要在这个时代迅速成长并提升自身能力的个人而言,学会利用AI辅助学习已经成为一种趋势。不论是国内的文心一言、豆包,还是国外的ChatGPT、Claude,它们都能成为我们编程学习的有力助手。利用AI进行编程学习将大大提升自己的编程学习效率,这里给大家推荐一个我自己在用的集成ChatGPT和Claude的网站(国内可用,站点稳定):传送门

抓住AI时代每一个机会,加速自己成长,提高自己的核心价值!

一、数据存储方式

  • 数据在内存中是以线性、以行为主的方式存储
  • 本篇文章中,16x8的二维数组,在内存中一段连续的128个地址存储该数组
    在这里插入图片描述
    代码结构
    在这里插入图片描述

先放上头文件及main文件
common.cuh

#ifndef COMMON_CUH
#define COMMON_CUH#include "cuda_runtime.h"
#include <stdio.h>// 声明外部函数,它们将在其他文件中实现。
// 这些函数定义了 CUDA 的网格和块结构,分别表示
// 2维网格和2维线程块、2维网格和1维线程块、1维网格和1维线程块。
extern void grid2D_block2D();
extern void grid2D_block1D();
extern void grid1D_block1D();// ErrorCheck 是一个内联函数,用于检查 CUDA 函数的返回错误码。
// 如果有错误发生,它将打印错误代码、错误名称、错误描述、文件名和行号。
// 此函数的目的是帮助调试 CUDA 错误。
inline cudaError_t ErrorCheck(cudaError_t error_code, const char* filename, int lineNumber) {if (error_code != cudaSuccess) {printf("CUDA error:\ncode=%d, name=%s, description=%s\nfile=%s,line=%d\n",error_code, cudaGetErrorName(error_code), cudaGetErrorString(error_code), filename, lineNumber);return error_code;  // 返回错误码以便调用方了解错误情况。}return error_code;  // 如果没有错误,返回相同的错误码。
}// setGPU 是一个内联函数,用于设置 GPU 设备。
// 它首先获取系统中可用的 CUDA 兼容 GPU 数量。
// 如果没有找到可用的 GPU,程序将退出,否则设置设备并显示相应信息。
inline void setGPU() {int iDeviceCount = 0;  // 存储系统中可用 GPU 的数量// 获取设备数量并检查返回的错误码。cudaError_t error = ErrorCheck(cudaGetDeviceCount(&iDeviceCount), __FILE__, __LINE__);// 如果没有 GPU 或发生错误,则终止程序。if (error != cudaSuccess || iDeviceCount == 0) {printf("No CUDA compatible GPU found\n");exit(-1);  // 返回非零值,表示错误。} else {printf("The count of GPUs is %d.\n", iDeviceCount);  // 显示找到的 GPU 数量。}// 设置设备 ID 为 0 的 GPUint iDevice = 0;error = ErrorCheck(cudaSetDevice(iDevice), __FILE__, __LINE__);if (error != cudaSuccess) {printf("cudaSetDevice failed!\n");exit(-1);  // 设置失败时终止程序。} else {printf("cudaSetDevice success!\n");  // 成功设置 GPU 后的确认信息。}
}#endif // COMMON_CUH

main.cu

#include "cuda_runtime.h"
#include <stdio.h>
#include "./common.cuh" // 包含自定义的通用 CUDA 工具,例如 setGPU 和 ErrorCheckint main() {// grid2D_block2D();  // 使用 2维网格和 2维线程块的函数,已注释掉// grid2D_block1D();  // 使用 2维网格和 1维线程块的函数,已注释掉grid1D_block1D();    // 使用 1维网格和 1维线程块的函数,执行矩阵加法return 0; // 返回 0 表示程序执行成功
}

二、二维网格二维线程块

二维网格和二维线程块对二维矩阵进行索引,每个线程可负责一个矩阵元素的计算任务

在这里插入图片描述
在这里插入图片描述

//
// Created by Administrator on 2024/10/25.
//
#include "common.cuh"// 定义一个 CUDA 内核函数 addMatrix,用于对两个矩阵进行元素逐一相加。
// A、B 是输入矩阵,C 是输出矩阵,nx 和 ny 分别是矩阵的列数和行数。
__global__ void addMatrix(int *A, int *B, int *C, const int nx, const int ny) {int ix = blockIdx.x * blockDim.x + threadIdx.x; // 确定线程在 x 方向上的索引int iy = blockIdx.y * blockDim.y + threadIdx.y; // 确定线程在 y 方向上的索引unsigned int idx = iy * nx + ix; // 计算该线程对应矩阵中的一维索引// 仅当索引在矩阵范围内时执行加法运算,以避免越界访问if (ix < nx && iy < ny) {C[idx] = A[idx] + B[idx];}
}// 定义一个函数 grid2D_block2D 来设置并调用 CUDA 内核
// 该函数配置并使用二维网格和二维块结构
void grid2D_block2D(void) {setGPU(); // 设置 GPU// 初始化矩阵大小和字节数int nx = 16; // 列数int ny = 8;  // 行数int nxy = nx * ny; // 矩阵元素总数size_t stBytesCount = nxy * sizeof(int); // 矩阵所需的总字节数// 在主机(CPU)上分配内存int *ipHost_A, *ipHost_B, *ipHost_C;ipHost_A = (int *)malloc(stBytesCount); // 矩阵 AipHost_B = (int *)malloc(stBytesCount); // 矩阵 BipHost_C = (int *)malloc(stBytesCount); // 矩阵 C// 初始化 A 和 B 的值,C 初始化为零if (ipHost_A != NULL && ipHost_B != NULL && ipHost_C != NULL) {for (int i = 0; i < nxy; i++) {ipHost_A[i] = i;        // 矩阵 A 的元素值设为 iipHost_B[i] = i + 1;    // 矩阵 B 的元素值设为 i+1}memset(ipHost_C, 0, stBytesCount); // 矩阵 C 的元素初始化为 0}else {printf("fail to malloc memory.\n");exit(-1); // 如果内存分配失败,退出程序}// 在设备(GPU)上分配内存int *ipDevice_A, *ipDevice_B, *ipDevice_C;ErrorCheck(cudaMalloc((int **)&ipDevice_A, stBytesCount), __FILE__, __LINE__);ErrorCheck(cudaMalloc((int **)&ipDevice_B, stBytesCount), __FILE__, __LINE__);ErrorCheck(cudaMalloc((int **)&ipDevice_C, stBytesCount), __FILE__, __LINE__);if (ipDevice_A != NULL && ipDevice_B != NULL && ipDevice_C != NULL) {// 将 A 和 B 从主机复制到设备ErrorCheck(cudaMemcpy(ipDevice_A, ipHost_A, stBytesCount, cudaMemcpyHostToDevice), __FILE__, __LINE__);ErrorCheck(cudaMemcpy(ipDevice_B, ipHost_B, stBytesCount, cudaMemcpyHostToDevice), __FILE__, __LINE__);ErrorCheck(cudaMemcpy(ipDevice_C, ipHost_C, stBytesCount, cudaMemcpyHostToDevice), __FILE__, __LINE__);}else {printf("fail to malloc memory.\n");free(ipHost_A);free(ipHost_B);free(ipHost_C);exit(-1); // 如果设备内存分配失败,退出程序}// 设置线程块和网格维度dim3 block(4, 4); // 定义每个块的尺寸(4x4 线程块)dim3 grid((nx + block.x - 1) / block.x, (ny + block.y - 1) / block.y); // 定义网格尺寸printf("Thread config : grid (%d, %d) block (%d, %d)\n", grid.x, grid.y, block.x, block.y);// 启动 CUDA 内核addMatrix<<<grid, block>>>(ipDevice_A, ipDevice_B, ipDevice_C, nx, ny);ErrorCheck(cudaDeviceSynchronize(), __FILE__, __LINE__);// 将结果从设备复制回主机ErrorCheck(cudaMemcpy(ipHost_C, ipDevice_C, stBytesCount, cudaMemcpyDeviceToHost), __FILE__, __LINE__);// 输出前 10 个元素的加法结果,验证计算是否正确for (int i = 0; i < 10; i++) {printf("idx=%2d\tmatrix_A:%d\tmatrix_B:%d\tresult=%d\n", i + 1, ipHost_A[i], ipHost_B[i], ipHost_C[i]);}// 释放主机和设备上的内存free(ipHost_A);free(ipHost_B);free(ipHost_C);ErrorCheck(cudaFree(ipDevice_A), __FILE__, __LINE__);ErrorCheck(cudaFree(ipDevice_B), __FILE__, __LINE__);ErrorCheck(cudaFree(ipDevice_C), __FILE__, __LINE__);ErrorCheck(cudaDeviceReset(), __FILE__, __LINE__);return;
}

三、二维网格一维线程块

二维网格和一维线程块对二维矩阵进行索引
每个线程可负责一个矩阵元素的计算任务
与二维网格二维线程块的情况极为相似

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

//
// Created by Administrator on 2024/10/25.
//
#include "common.cuh"// 定义一个 CUDA 内核函数 addMatrix_21D,用于执行矩阵相加操作。
// 与标准的 2维线程块不同,此内核使用 2维网格和 1维线程块配置。
// A、B 是输入矩阵,C 是输出矩阵,nx 和 ny 分别是矩阵的列数和行数。
__global__ void addMatrix_21D(int *A, int *B, int *C, const int nx, const int ny)
{int ix = blockIdx.x * blockDim.x + threadIdx.x; // 计算线程在 x 方向上的索引int iy = threadIdx.y;                           // 线程在 y 方向上的索引unsigned int idx = iy * nx + ix; // 将二维索引转换为一维索引// 仅在索引位于矩阵范围内时执行加法操作,避免越界访问if (ix < nx && iy < ny){C[idx] = A[idx] + B[idx];}
}// 定义一个函数 grid2D_block1D 来配置并调用 CUDA 内核。
// 该函数使用二维网格和一维块的配置。
void grid2D_block1D(void)
{setGPU(); // 设置 GPU 设备// 设置矩阵的尺寸int nx = 16; // 矩阵列数int ny = 8;  // 矩阵行数int nxy = nx * ny; // 矩阵总元素数size_t stBytesCount = nxy * sizeof(int); // 矩阵所需的总字节数// 在主机(CPU)上分配内存int *ipHost_A, *ipHost_B, *ipHost_C;ipHost_A = (int *)malloc(stBytesCount); // 分配矩阵 A 的内存ipHost_B = (int *)malloc(stBytesCount); // 分配矩阵 B 的内存ipHost_C = (int *)malloc(stBytesCount); // 分配结果矩阵 C 的内存// 初始化矩阵 A 和 B 的数据if(ipHost_A != NULL && ipHost_B != NULL && ipHost_C != NULL){for(int i = 0; i < nxy; i++){ipHost_A[i] = i;        // A 的每个元素为 iipHost_B[i] = i + 1;    // B 的每个元素为 i+1}} else {printf("fail to malloc memory.\n");exit(-1); // 如果内存分配失败,退出程序}// 在设备(GPU)上分配内存int *ipDevice_A, *ipDevice_B, *ipDevice_C;ErrorCheck(cudaMalloc((int **)&ipDevice_A, stBytesCount), __FILE__, __LINE__);ErrorCheck(cudaMalloc((int **)&ipDevice_B, stBytesCount), __FILE__, __LINE__);ErrorCheck(cudaMalloc((int **)&ipDevice_C, stBytesCount), __FILE__, __LINE__);if(ipDevice_A != NULL && ipDevice_B != NULL && ipDevice_C != NULL){// 将主机内存复制到设备ErrorCheck(cudaMemcpy(ipDevice_A, ipHost_A, stBytesCount, cudaMemcpyHostToDevice), __FILE__, __LINE__);ErrorCheck(cudaMemcpy(ipDevice_B, ipHost_B, stBytesCount, cudaMemcpyHostToDevice), __FILE__, __LINE__);ErrorCheck(cudaMemcpy(ipDevice_C, ipHost_C, stBytesCount, cudaMemcpyHostToDevice), __FILE__, __LINE__);} else {// 如果分配失败,释放内存并退出程序free(ipHost_A);free(ipHost_B);free(ipHost_C);exit(-1);}// 定义线程块和网格的尺寸dim3 block(4); // 每个块有 4 个线程dim3 grid((nx + block.x - 1) / block.x, (ny + block.y - 1) / block.y); // 配置网格尺寸printf("Thread config: grid (%d, %d), block(%d, %d).\n", grid.x, grid.y, block.x, block.y);// 启动 CUDA 内核addMatrix_21D<<<grid, block>>>(ipDevice_A, ipDevice_B, ipDevice_C, nx , ny);ErrorCheck(cudaDeviceSynchronize(), __FILE__, __LINE__);// 将结果从设备复制回主机ErrorCheck(cudaMemcpy(ipHost_C, ipDevice_C, stBytesCount, cudaMemcpyDeviceToHost), __FILE__, __LINE__);// 输出前 10 个元素的加法结果,进行验证for(int i = 0; i < 10; i++){printf("idx=%2d\tmatrix_A:%d\tmatrix_B:%d\tresult=%d\n", i + 1, ipHost_A[i], ipHost_B[i], ipHost_C[i]);}// 释放主机和设备上的内存free(ipHost_A);free(ipHost_B);free(ipHost_C);ErrorCheck(cudaFree(ipDevice_A), __FILE__, __LINE__);ErrorCheck(cudaFree(ipDevice_B), __FILE__, __LINE__);ErrorCheck(cudaFree(ipDevice_C), __FILE__, __LINE__);ErrorCheck(cudaDeviceReset(), __FILE__, __LINE__);return;
}

四、一维网格一维线程块

一维网格和一维线程块对二维矩阵进行索引
每个线程负责矩阵一列的运算
编写核函数时,需要使用循环

在这里插入图片描述
在这里插入图片描述

//
// Created by Administrator on 2024/10/28.
//
#include "common.cuh"// 定义一个 CUDA 内核函数 addMatrix_11D,使用 1D 网格和 1D 块来执行矩阵相加。
// A、B 是输入矩阵,C 是输出矩阵,nx 和 ny 分别是矩阵的列数和行数。
__global__ void addMatrix_11D(int *A, int *B, int *C, const int nx, const int ny)
{int ix = blockIdx.x * blockDim.x + threadIdx.x; // 计算线程在 x 方向的索引// 确保索引在矩阵范围内if (ix < nx){// 在 y 方向上循环遍历for (int iy = 0; iy < ny; iy++){unsigned int idx = iy * nx + ix; // 将二维索引转换为一维索引C[idx] = A[idx] + B[idx]; // 将 A 和 B 对应位置相加并存储在 C 中}}
}// 定义一个函数 grid1D_block1D 来配置并调用 CUDA 内核,使用 1D 网格和 1D 块
void grid1D_block1D(void)
{printf("grid1D_block1D\n");setGPU(); // 设置 GPU 设备// 定义矩阵的尺寸int nx = 16; // 矩阵的列数int ny = 8;  // 矩阵的行数int nxy = nx * ny; // 矩阵的总元素数size_t stBytesCount = nxy * sizeof(int); // 矩阵所需的总字节数// 在主机(CPU)上分配内存int *ipHost_A, *ipHost_B, *ipHost_C;ipHost_A = (int *)malloc(stBytesCount); // 分配矩阵 A 的内存ipHost_B = (int *)malloc(stBytesCount); // 分配矩阵 B 的内存ipHost_C = (int *)malloc(stBytesCount); // 分配结果矩阵 C 的内存// 初始化矩阵 A 和 B 的数据if(ipHost_A != NULL && ipHost_B != NULL && ipHost_C != NULL){for(int i = 0; i < nxy; i++){ipHost_A[i] = i;       // 矩阵 A 的元素设为 iipHost_B[i] = i + 1;   // 矩阵 B 的元素设为 i+1}} else {printf("fail to malloc memory.\n");exit(-1); // 如果分配失败,退出程序}// 在设备(GPU)上分配内存int *ipDevice_A, *ipDevice_B, *ipDevice_C;ErrorCheck(cudaMalloc((int **)&ipDevice_A, stBytesCount), __FILE__, __LINE__);ErrorCheck(cudaMalloc((int **)&ipDevice_B, stBytesCount), __FILE__, __LINE__);ErrorCheck(cudaMalloc((int **)&ipDevice_C, stBytesCount), __FILE__, __LINE__);if(ipDevice_A != NULL && ipDevice_B != NULL && ipDevice_C != NULL){// 将主机内存复制到设备ErrorCheck(cudaMemcpy(ipDevice_A, ipHost_A, stBytesCount, cudaMemcpyHostToDevice), __FILE__, __LINE__);ErrorCheck(cudaMemcpy(ipDevice_B, ipHost_B, stBytesCount, cudaMemcpyHostToDevice), __FILE__, __LINE__);} else {// 如果分配失败,释放内存并退出程序free(ipHost_A);free(ipHost_B);free(ipHost_C);exit(-1);}// 设置线程块和网格的尺寸dim3 block(4); // 每个块包含 4 个线程dim3 grid((nx + block.x - 1) / block.x); // 设置 1D 网格的维度printf("Thread config: grid (%d, %d), block(%d, %d).\n", grid.x, grid.y, block.x, block.y);// 启动 CUDA 内核addMatrix_11D<<<grid, block>>>(ipDevice_A, ipDevice_B, ipDevice_C, nx , ny);ErrorCheck(cudaDeviceSynchronize(), __FILE__, __LINE__);// 将结果从设备复制回主机ErrorCheck(cudaMemcpy(ipHost_C, ipDevice_C, stBytesCount, cudaMemcpyDeviceToHost), __FILE__, __LINE__);// 输出前 10 个元素的加法结果,验证计算正确性for(int i = 0; i < 10; i++){printf("idx=%2d\tmatrix_A:%d\tmatrix_B:%d\tresult=%d\n", i + 1, ipHost_A[i], ipHost_B[i], ipHost_C[i]);}// 释放主机和设备上的内存free(ipHost_A);free(ipHost_B);free(ipHost_C);ErrorCheck(cudaFree(ipDevice_A), __FILE__, __LINE__);ErrorCheck(cudaFree(ipDevice_B), __FILE__, __LINE__);ErrorCheck(cudaFree(ipDevice_C), __FILE__, __LINE__);ErrorCheck(cudaDeviceReset(), __FILE__, __LINE__);return;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/459337.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

软件测试工程师晋升方向,你选对了吗?

在信息技术行业中&#xff0c;软件测试工程师是一个至关重要的角色&#xff0c;他们负责确保软件的质量和稳定性。然而&#xff0c;随着经验和技能的增长&#xff0c;软件测试工程师也面临着晋升和职业发展的问题。本文将探讨软件测试工程师的晋升方向&#xff0c;为有志于在软…

关键词排名技巧实用指南提升网站流量的有效策略

内容概要 在数字营销的世界中&#xff0c;关键词排名的影响不可小觑。关键词是用户在搜索引擎中输入的词语&#xff0c;通过精确选择和优化这些关键词&#xff0c;网站能够更轻松地被目标用户发现。提升关键词排名的第一步是了解基本概念&#xff0c;包括关键词的分类、重要性…

NVR设备ONVIF接入平台EasyCVR视频分析设备平台视频质量诊断技术与能力

视频诊断技术是一种智能化的视频故障分析与预警系统&#xff0c;NVR设备ONVIF接入平台EasyCVR通过对前端设备传回的码流进行解码以及图像质量评估&#xff0c;对视频图像中存在的质量问题进行智能分析、判断和预警。这项技术在安防监控领域尤为重要&#xff0c;因为它能够确保监…

前端八股文第一篇

自我介绍&#xff1a;我的优势以及和这个岗位的匹配度。 为什么想进我们公司&#xff1a;HR想听有没有对这个岗位进行充分了解。 以前做的项目&#xff1a;你的思路&#xff0c;你的贡献&#xff0c;你的总结是什么。 介绍最失败的事情&#xff1a;有没有总结和反思。 要求…

SolidWorks 导出 URDF 中的惯性矩阵错误问题

系列文章目录 前言 一、 dsubhasish09于2021年5月23日发表评论 在装配体中定义由多个零件组成的 link 时&#xff0c;单个零件质心处各自的惯性值&#xff08;在使用相似性变换使其与关节坐标系平行后&#xff09;会直接相加&#xff0c;从而得到净惯性矩阵&#xff0c;而不是…

鸿蒙UI开发——基于组件安全区方案实现沉浸式界面

1、概 述 本文是接着上篇文章 鸿蒙UI开发——基于全屏方案实现沉浸式界面 的继续讨论。除了全屏方案实现沉浸式界面外&#xff0c;我们还可以使用组件安全区的方案。 当我们没有使用setWindowLayoutFullScreen()接口设置窗口为全屏布局时&#xff0c;默认使用的策略就是组件安…

鸿蒙学习总结

鸿蒙&#xff08;HarmonyOS&#xff09;&#xff0c;做为国产自主研发设计的第一个操作系统&#xff0c;从开放测试以来一直备受关注。其纯血鸿蒙版&#xff08;HarmonyOS NEXT&#xff09;也于进日发布。过去的一段时间里&#xff0c;我站在一个移动开发者的角度对HarmonyOS进…

【electron8】electron实现“图片”的另存为

注&#xff1a;该列出的代码&#xff0c;都在文章内示例出 1. 另存为按钮事件&#xff1a; const saveAsHandler async () > {const { path, sessionId } recordInfoif(typeof message ! string) return;// 因为我的图片是加密的&#xff0c;所以我需要根据接口返回的路…

着色器的认识

知识了解&#xff1a; 着色器&#xff1a; 顶点着色器: 用来描述顶点的特性,如位置、颜色等&#xff0c;其中&#xff0c;顶点&#xff1a;是指二维或三维空间中的一个点比如交点或者端点。 片元着色器&#xff1a;用来进行逐片元处理操作&#xff0c;比如光照、颜色叠加等&…

如何将原本打开Edge呈现出的360浏览器,更换成原本的Edge页面或者百度等其他页面

每次打开Edge浏览器&#xff0c;都会呈现出360浏览器的页面&#xff0c;很烦。以下将说明如果将呈现出的360浏览器&#xff0c;更换成原本的Edge页面或者百度等其他页面。 1.找到你的控制面板&#xff0c;点击卸载程序。 2. 找到360安全卫士&#xff0c;右键单击更改/卸载。 3…

Android 应用申请 Google MBA权限

Google Case链接&#xff1a;89 > 34810 > 30025 > 155353 > Handheld > MBA Policies 按照指引填写模板 This bug is for the approval of MBAs under [13.2.2 Pregrant permissions policy](https://docs.partner.android.com/gms/policies/domains/mba#mba-…

基于 ThinkPHP+Mysql 灵活用工_灵活用工系统_灵活用工平台

基于 ThinkPHPMysql 灵活用工灵活用工平台灵活用工系统灵活用工小程序灵活用工源码灵活用工系统源码 开发语言 ThinkPHPMysql 源码合作 提供完整源代码 软件界面展示 一、企业管理后台 二、运用管理平台 三、手机端

Web 核心指标优化之 INP 篇

这篇文章是我在公司做 INP 优化经验分享的演讲稿。 大家好&#xff0c;今天我要做的分享是关于 INP 的一些优化经验。 概念 首先&#xff0c;什么叫 INP 呢。 INP 的全称叫 Interaction to Next Pain &#xff0c;翻译过来就是从交互到下一次绘制的延迟。这是 Google 提出来的…

Footprint Analytics 现已支持 TRON 链上数据分析

我们很高兴地宣布&#xff0c;全球最大的区块链网络之一 TRON&#xff08;波场&#xff09;已经成功接入 Footprint Analytics&#xff01;通过这次集成&#xff0c;开发者、分析师和区块链爱好者们现在可以使用 Footprint 的专业分析工具&#xff0c;深入挖掘 TRON 生态系统的…

考到了PMP证书之后,我的电话被打爆了....

考到了PMP之后&#xff0c;万年不见响的手机竟也开始频繁来call了~&#x1f645; 一般是哪些人&#xff0c;会因为什么事来找&#xff1f;本期小赛就给大家讲讲是啥情况~ 一、HR打电话邀请面试 在没有PMP证书的时候&#xff0c;自己投出去的简历往往是石沉大海&#xff0c;杳…

UI设计软件全景:13款工具助力创意实现

选择恰当的UI设计工具对于创建美观且用户体验良好的应用程序界面至关重要。不同的APP功能可能需要不同的界面设计软件&#xff0c;但并非所有工具都需要精通&#xff0c;熟练掌握几个常用的就足够了。以下是13款APP界面设计软件&#xff0c;它们能够为你的团队提供绘制APP界面所…

使用iframe内嵌grafana监控页面

grafana监控大盘被普遍采用&#xff0c;但一个缺点就是一次只能打开一个页面&#xff0c;切换页面很不便&#xff0c;如果能一次同时展示多个页面就好了&#xff0c;如图&#xff1a; 使用tab标签&#xff0c;结合iframe&#xff0c;把各个监控页面全放在一起&#xff0c;可以…

人脸美颜 API 对接说明

本文将介绍一种 人脸美颜 API 对接说明&#xff0c;它可以通过用户上传一张人脸图片&#xff08;最多能处理一张图片中最大的五张人脸信息&#xff09;&#xff0c;精准定位五官&#xff0c;实现美肤、亮肤、祛痘等美颜功能。 接下来介绍下 人脸美颜 API 的对接说明。 申请流…

【HTML】之基本标签的使用详解

HTML&#xff08;HyperText Markup Language&#xff0c;超文本标记语言&#xff09;是构建网页的基础。它不是一种编程语言&#xff0c;而是一种标记语言&#xff0c;用于描述网页的内容和结构。本文将带你了解HTML的基础知识&#xff0c;并通过详细的代码示例和中文注释进行讲…

论文略读:Can We Edit Factual Knowledge by In-Context Learning?

EMNLP 2023 第一个探索in-context learning在语言模型知识编辑方便的效果 传统的知识编辑方法通过在包含特定知识的文本上进行微调来改进 LLMs 随着模型规模的增加&#xff0c;这些基于梯度的方法会带来巨大的计算成本->论文提出了上下文知识编辑&#xff08;IKE&#xff0…