Spring Cloud Sleuth(Micrometer Tracing +Zipkin)

分布式链路追踪

分布式链路追踪技术要解决的问题,分布式链路追踪(Distributed Tracing),就是将一次分布式请求还原成调用链路,进行日志记录,性能监控并将一次分布式请求的调用情况集中展示。比如各个服务节点上的耗时、请求具体到达哪台机器上、每个服务节点的请求状态等等

Micrometer Tracing 版本支持

目前最新版本的sleuth 已经迁移到Micrometer Tracing spring-cloud-sleuth,以及支持springboot版本,sleuth 已经不支持spring boot 3.x版本,同时Micrometer也兼容支持zipkin展现

链路追踪原理 

链路通过TraceId唯一标识,Span标识发起的请求信息,各span通过parent id 关联起来 

Zipkin 

Zipkin是一种分布式链路跟踪系统图形化的工具,Zipkin 是 Twitter 开源的分布式跟踪系统,能够收集微服务运行过程中的实时调用链路信息,并能够将这些调用链路信息展示到Web图形化界面上供开发人员分析,开发人员能够从ZipKin中分析出调用链路中的性能瓶颈,识别出存在问题的应用程序,进而定位问题和解决问题,官网zipkin

Micrometer 负责采集数据,Zipkin负责页面展示

 下载zipkin

https://zipkin.io/pages/quickstart.html

运行zipkin

访问http://localhost:9411/zipkin/ 

整合分布式链路追踪 

引入依赖,我这里有父工程,版本号在父工程中指定,在子模块将这个依赖包引入即可

  <properties><micrometer-tracing.version>1.2.0</micrometer-tracing.version><micrometer-observation.version>1.12.0</micrometer-observation.version><feign-micrometer.version>12.5</feign-micrometer.version><zipkin-reporter-brave.version>2.17.0</zipkin-reporter-brave.version></properties><dependencyManagement><dependencies><dependency><groupId>io.micrometer</groupId><artifactId>micrometer-tracing-bom</artifactId><version>${micrometer-tracing.version}</version><type>pom</type><scope>import</scope></dependency><!--micrometer-tracing指标追踪  1--><dependency><groupId>io.micrometer</groupId><artifactId>micrometer-tracing</artifactId><version>${micrometer-tracing.version}</version></dependency><!--micrometer-tracing-bridge-brave适配zipkin的桥接包 2--><dependency><groupId>io.micrometer</groupId><artifactId>micrometer-tracing-bridge-brave</artifactId><version>${micrometer-tracing.version}</version></dependency><!--micrometer-observation 3--><dependency><groupId>io.micrometer</groupId><artifactId>micrometer-observation</artifactId><version>${micrometer-observation.version}</version></dependency><!--feign-micrometer 4--><dependency><groupId>io.github.openfeign</groupId><artifactId>feign-micrometer</artifactId><version>${feign-micrometer.version}</version></dependency><!--zipkin-reporter-brave 5--><dependency><groupId>io.zipkin.reporter2</groupId><artifactId>zipkin-reporter-brave</artifactId><version>${zipkin-reporter-brave.version}</version></dependency></dependencies></dependencyManagement>

 yaml文件配置

management:zipkin:tracing:endpoint: http://localhost:9411/api/v2/spanstracing:sampling:probability: 1.0 #采样率默认为0.1(0.1就是10次只能有一次被记录下来),值越大收集越及时。

 访问测试

启动服务,确保已经向nacos注册,使用openFeign进行远程调用测试

 

消费者服务访问提供者服务,查看链路追踪 

 

点击show查看调用耗时以及调用信息信息 

 

查看依赖关系 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/461622.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Vision - 开源视觉分割算法框架 Grounded SAM2 配置与推理 教程 (1)

欢迎关注我的CSDN&#xff1a;https://spike.blog.csdn.net/ 本文地址&#xff1a;https://spike.blog.csdn.net/article/details/143388189 免责声明&#xff1a;本文来源于个人知识与公开资料&#xff0c;仅用于学术交流&#xff0c;欢迎讨论&#xff0c;不支持转载。 Ground…

百度如何打造AI原生研发新范式?

&#x1f449;点击即可下载《百度AI原生研发新范式实践》资料 2024年10月23-25日&#xff0c;2024 NJSD技术盛典暨第十届NJSD软件开发者大会、第八届IAS互联网架构大会在南京召开。本届大会邀请了工业界和学术界的专家&#xff0c;优秀的工程师和产品经理&#xff0c;以及其它行…

初认识构建工具

初认识构建工具Webpack & Vite 目录 前言webpack 使用步骤配置文件 _entry_output✨_loader_babel_plugin_source map 开发服务器 前言 不同于node中编写代码&#xff0c;在html、css、js中不能放心使用模块化规范&#xff0c;主要是浏览器兼容性问题&#xff0c;以及…

数据结构 ——— 向上调整建堆和向下调整建堆的区别

目录 前言 向下调整算法&#xff08;默认小堆&#xff09; 利用向下调整算法对数组建堆 向上调整建堆和向下调整建堆的区别​编辑 向下调整建堆的时间复杂度&#xff1a; 向上调整建堆的时间复杂度&#xff1a; 结论 前言 在上一章讲解到了利用向上调整算法对数组进行…

分享几款开源好用的图片在线编辑,适合做快速应用嵌入

图片生成器是指一种工具或软件&#xff0c;用于自动生成图片或图像内容&#xff0c;通常依据用户设定的参数或模板进行操作。这种工具能够帮助用户快速创建视觉效果丰富的图像&#xff0c;而无需具备专业的设计技能。 在数字化时代&#xff0c;图片编辑已经成为日常工作和生活的…

我为何要用wordpress搭建一个自己的独立博客

我在csdn有一个博客&#xff0c;这个博客是之前学习编程时建立的。 博客有哪些好处呢&#xff1f; 1&#xff0c;可以写自己的遇到的问题和如何解决的步骤 2&#xff0c;心得体会&#xff0c;经验&#xff0c;和踩坑 3&#xff0c;可以转载别人的好的技术知识 4&#xff0c;宝贵…

ts:使用fs内置模块简单读写文件

ts&#xff1a;使用fs内置模块简单读写文件 一、主要内容说明二、例子&#xff08;一&#xff09;、fs模块的文件读写1.源码1 &#xff08;fs模块的文件读写&#xff09;2.源码1运行效果 三、结语四、定位日期 一、主要内容说明 在ts中&#xff0c;我们可以使用内置的fs模块来…

十个常见的软件测试面试题,拿走不谢

所有面试问题一般建议先总后分的方式来回答&#xff0c;这样可以让面试官感觉逻辑性很强。 1. 自我介绍 之所以让我们自我介绍&#xff0c;其实是面试官想找一些时间来看简历&#xff0c;所以自我介绍不用太长的时间&#xff0c;1-2分 钟即可。 自我介绍一般按以下方式进行介…

C++中关于 <functional> 的使用

#include <functional> 是 C 标准库中的一个头文件&#xff0c;主要用于提供与函数对象、函数指针和函数适配器相关的功能 一&#xff1a;定义方式 1. 定义和使用 std::function 和 Lambda 表达式 2&#xff1a;使用 std::bind 你可以使用 std::bind 来绑定函数参数&am…

Axios 请求超时设置无效的问题及解决方案

文章目录 Axios 请求超时设置无效的问题及解决方案1. 引言2. 理解 Axios 的超时机制2.1 Axios 超时的工作原理2.2 超时错误的处理 3. Axios 请求超时设置无效的常见原因3.1 配置错误或遗漏3.2 超时发生在建立连接之前3.3 使用了不支持的传输协议3.4 代理服务器或中间件干扰3.5 …

WPF+MVVM案例实战(十五)- 实现一个下拉式菜单(上)

文章目录 1 案例效果2、图标资源下载3、功能实现1.文件创建2、菜单原理分析3、一级菜单两种样式实现1、一级菜单无子项样式实现2、一级菜单有子项样式实现 4、总结 1 案例效果 提示 2、图标资源下载 从阿里矢量素材官网下载需要的菜单图片&#xff0c;如下所示&#xff1a; …

【环境搭建】Apache ZooKeeper 3.8.4 Stable

软件环境 Ubuntu 20.04 、OpenJDK 11 OpenJDK 11&#xff08;如果已经安装&#xff0c;可以跳过这一步&#xff09; 安装OpenJDK 11&#xff1a; $ sudo apt-get update$ sudo apt-get install -y openjdk-11-jdk 设置 JAVA_HOME 环境变量&#xff1a; $ sudo gedit ~/.bash…

后台管理系统的通用权限解决方案(九)SpringBoot整合jjwt实现登录认证鉴权

1&#xff09;创建maven工程jjwt-login-demo&#xff0c;并配置其pom.xml文件如下 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-ins…

国考报名照片无法使用照片审核工具上传失败的解决办法

国考报名过程中&#xff0c;照片审核是至关重要的一步&#xff0c;但许多考生在上传照片时遇到了难题&#xff0c;导致无法继续报名&#xff0c;从而影响抢考场位置&#xff0c;下面就介绍如何快速完成照片处理、审核和上传过审的技巧。 一、国考报名照片基本要求首先&#xff…

vue中如何为不同功能设置不同的默认打印设置(设置不同的打印机)

浏览器自带的window.print 功能较简单&#xff0c;这里使用LODOP露肚皮打印 以下是vue2示例&#xff1a; 从官网中下载Lodop和C-Lodop官网主站安装包并安装到本地电脑可以全局搜索电脑找到安装文件LodopFuncs.js&#xff0c;也可以直接复制我贴出来的文件 //用双端口加载主JS…

数据库管理系统的ACID都各自是什么?

本文基于DBMS中ACID属性的概念&#xff0c;这些属性保证了数据库中执行事务时保持数据一致性、完整性和可靠性所。事务是访问并可能修改数据库内容的单一逻辑工作单元。交易使用读写操作访问数据。为了保持数据库的一致性&#xff0c;在事务前后&#xff0c;遵循某些属性。这些…

ssm基于vue搭建的新闻网站+vue

系统包含&#xff1a;源码论文 所用技术&#xff1a;SpringBootVueSSMMybatisMysql 免费提供给大家参考或者学习&#xff0c;获取源码请私聊我 需要定制请私聊 目 录 目 录 I 摘 要 III ABSTRACT IV 1 绪论 1 1.1 课题背景 1 1.2 研究现状 1 1.3 研究内容 2 [2 系统…

OB_GINS_day3

这里写目录标题 实现当前状态初始化实现预积分的初始化由于此时preintegration_options 是3&#xff08;也就是考虑odo以及earth rotation&#xff09;为预积分的容器添加需要积分的IMU积分因子接下来是添加新的IMU到preintegration中 实现当前状态初始化 这个state_curr的主要…

如何优化kafka和mysql处理百万级消息计算和落库

一.业务场景 最近业务需要&#xff0c;做了性能优化操作。百万级消息在kafka中秒级传输。cpu密集计算分钟级完成&#xff0c;然后在mysql中秒级落库.模型cpu计算提高了1倍&#xff0c;落表速度提高了5倍&#xff0c;2分钟内完成. 如下序列图&#xff1a; 业务系统A发送千级别…

深度学习基础知识-Batch Normalization(BN)超详细解析

一、背景和问题定义 在深层神经网络&#xff08;Deep Neural Networks, DNNs&#xff09;中&#xff0c;层与层之间的输入分布会随着参数更新不断发生变化&#xff0c;这种现象被称为内部协变量偏移&#xff08;Internal Covariate Shift&#xff09;。具体来说&#xff0c;由…